CS 419: Computer Security

Week 2: Cryptography Symmetric Gryptography

Paul Krzyzanowski

© 2024 Paul Krzyzanowski. No part of this content, may be reproduced or reposted in whole or in part in any manner without the permission of the copyright owner.

A secret manner of writing, ... Generally, the art of writing or solving ciphers.

- Oxford English Dictionary

The analysis and decryption of encrypted text or information without prior knowledge of the keys.

- Oxford English Dictionary

cryptology

1967 D. Kahn, Codebreakers p. xvi, Cryptology is the science that embraces cryptography and cryptanalysis, but the term 'cryptology' sometimes loosely designates the entire dual field of both rendering signals secure and extracting information from them.

\author{

- Oxford English Dictionary
}

Cryptography \neq Security

Cryptography may be a component of a secure system

Just adding cryptography may not make a system secure

Cryptography: what is it good for?

- Confidentiality
- Others cannot read contents of the message
- Authentication
- Determine origin of message
- Integrity
- Verify that message has not been modified
- Nonrepudiation
- Sender should not be able to falsely deny that a message was sent

Terms

Plaintext (cleartext) message P

Encryption $E(P)$
Produces Ciphertext, C = $E(\mathrm{P})$
Decryption, $\mathrm{P}=\mathrm{D}(\mathrm{C})$

Cipher $=$ cryptographic algorithm

Secret algorithm

Algorithm is proprietary

- Vulnerable to:
- Leaking
- Reverse engineering
- RC3, RC4, RC5 ciphers
- HD DVD (Dec 2006) and Blu-Ray (Jan 2007)
- Digital cellular encryption algorithms
- DVD and DIVX video compression
- Firewire protocol
- Enigma cipher machine
- Every NATO and Warsaw Pact algorithm during Cold War
- Hard to validate its effectiveness (who will test it?)
- Useless once exposed - not a viable approach!

Schneier's Law

Any person can invent a security system so clever that she or he can't think of how to break it.

> "Anyone, from the most clueless amateur to the best cryptographer, can create an algorithm that he himself can't break. It's not even hard." $$
\begin{array}{l}\text { - Bruce Schneier }\end{array}
$$

Shared algorithms \& secret keys

The key

BTW, the above is a bump key. See http://en.wikipedia.org/wiki/Lock_bumping

The lock

- We understand how the mechanism works:
- Strengths
- Weaknesses
- Based on this understanding, we can assess how much to trust the key \& lock

A cryptosystem should be secure even if everything about the system, except the key, is public knowledge

Security should rest entirely on the secrecy of the key

Properties of a good cryptosystem

1. Ciphertext should be indistinguishable from random values $\Rightarrow \boldsymbol{h i g h}$ entropy
2. Given ciphertext, there should be no way to extract the original plaintext or the key short of enumerating all possible keys (i.e., a brute force attack, also called an exhaustive search) \Rightarrow encryption is not invertible without the key

- This is true even if the attacker has many (P, C) pairs or can supply an arbitrary amount of plaintext to be encrypted

3. The keys should be large enough that an exhaustive search is not feasible

Properties: keys

- Keys must be

1. Protected
2. Random
3. Used for a limited time

- A cipher is no stronger than its key length
- If the key is too short, an attacker can do a brute-force search - enumerate all keys
- A cipher may be a lot weaker than its key length
- Each extra bit doubles the work for a brute-force search
- 256-bit AES vs 128 -bit AES is a bit slower (18% on my Raspberry Pi 4)
but gives the attacker 2^{128} more keys to test
- 168-bit 3DES is $3 x$ slower than 56 -bit DES but 2^{112} times harder for the attacker

Keys and the power of 2

- Adding one extra bit to a key doubles the search space
- Suppose it takes 1 second to search through all keys with a 20-bit key

key length	number of keys	search time	1000 petaFLOPs supercomputer*
20 bits	$1,048,576$	1 second	0.001 seconds
21 bits	$2,097,152$	2 seconds	0.002 seconds
32 bits	4.3×10^{9}	~ 1 hour	4.3 seconds
56 bits	7.2×10^{16}	2,178 years	2.2 years
64 bits	1.8×10^{19}	$>557,000$ years	584 years
128 bits	3.4×10^{29}	1.0×10^{25} years	1.1×10^{22} years
256 bits	1.2×10^{77}	3.5×10^{63} years	3.7×10^{60} years

Distributed \& custom hardware efforts typically allow us to test between 1 and >100 billion 64-bit (e.g., RC5) keys per second
*Assume the supercomputer can test 1 billion keys per second

Symmetric key ciphers

One shared secret key, K, for encryption \& decryption

$$
\begin{aligned}
& \mathrm{C}=E_{K}(\mathrm{P}) \\
& \mathrm{P}=D_{K}(\mathrm{C})
\end{aligned}
$$

Classic Cryptosystems: Substitution Ciphers

Atbash (אתבש) - Ancient Hebrew cipher

c. 600 BCE

No information (key) needs to be conveyed!

Origin of the name:
κ - alef ($1^{\text {st }}$ letter),
ת - tav (last letter),
ב - bet ($2^{\text {nd }}$),
ש - shin (2 ${ }^{\text {nd }}$ to last)

India - Mlecchita vikalpa: Kautiliya

"The art of understanding writing in cypher, and the writing of words in a peculiar way"

Kautiliya

- Phonetic substitution scheme used in India 400 BCE - 200 CE
- Short \& long vowels are exchanged with consonants

Cæsar cipher

Earliest documented military use of cryptography

- Julius Caesar c. 60 BCE
- Shift cipher: simple variant of a substitution cipher
- Each letter replaced by one n positions away modulo alphabet size $n=$ shift value $=$ key

| \mathbf{A} | \mathbf{B} | \mathbf{C} | \mathbf{D} | \mathbf{E} | \mathbf{F} | \mathbf{G} | \mathbf{H} | \mathbf{I} | \mathbf{J} | \mathbf{K} | \mathbf{L} | \mathbf{M} | \mathbf{N} | \mathbf{O} | \mathbf{P} | \mathbf{Q} | \mathbf{R} | \mathbf{S} | \mathbf{T} | \mathbf{U} | \mathbf{V} | \mathbf{W} |
| :--- | \mathbf{X} Y

[^0]MY CAT HAS FLEAS

| \mathbf{A} | \mathbf{B} | \mathbf{C} | \mathbf{D} | \mathbf{E} | \mathbf{F} | \mathbf{G} | \mathbf{H} | \mathbf{I} | \mathbf{J} | \mathbf{K} | \mathbf{L} | \mathbf{M} | \mathbf{N} | \mathbf{O} | \mathbf{P} | \mathbf{Q} | \mathbf{R} | \mathbf{S} | \mathbf{T} | \mathbf{U} | \mathbf{V} | \mathbf{W} | \mathbf{X} | \mathbf{Y} |
| :--- | | \mathbf{U} | \mathbf{V} | \mathbf{W} | \mathbf{X} | \mathbf{Y} | \mathbf{Z} | \mathbf{A} | \mathbf{B} | \mathbf{C} | \mathbf{D} | \mathbf{E} | \mathbf{F} | \mathbf{G} | \mathbf{H} | \mathbf{I} | \mathbf{J} | \mathbf{K} | \mathbf{L} | \mathbf{M} | \mathbf{N} | \mathbf{O} | \mathbf{P} | \mathbf{Q} |
| :--- |
| \mathbf{R} | \mathbf{S} | \mathbf{T} | |

MY CAT HAS FLEAS

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}	\mathbf{I}	\mathbf{J}	\mathbf{K}	\mathbf{L}	\mathbf{M}	\mathbf{N}	\mathbf{O}	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}	\mathbf{T}	\mathbf{U}	\mathbf{V}	\mathbf{W}	\mathbf{X}																								
\mathbf{Y}	\mathbf{Z}																								\mathbf{U}	\mathbf{V}	\mathbf{W}	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}	\mathbf{I}	\mathbf{J}	\mathbf{K}	\mathbf{L}	\mathbf{M}	\mathbf{N}	\mathbf{O}	\mathbf{P}	\mathbf{Q}
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---																									
\mathbf{R}	\mathbf{S}	\mathbf{T}																																													

MY CAT HAS FLEAS

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}	\mathbf{I}	\mathbf{J}	\mathbf{K}	\mathbf{L}	\mathbf{M}	\mathbf{N}	\mathbf{O}	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}	\mathbf{T}	\mathbf{U}	\mathbf{V}	\mathbf{W}	\mathbf{X}	\mathbf{Y}
\mathbf{Z}																								
\mathbf{U}	\mathbf{V}	\mathbf{W}	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}	\mathbf{I}	\mathbf{J}	\mathbf{K}	\mathbf{L}	\mathbf{M}	\mathbf{N}	\mathbf{O}	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}

MY CAT HAS FLEAS

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{F}	\mathbf{G}	\mathbf{H}	\mathbf{I}	\mathbf{J}	\mathbf{K}	\mathbf{L}	\mathbf{M}	\mathbf{N}	\mathbf{O}	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}	\mathbf{T}	\mathbf{U}	\mathbf{V}	\mathbf{W}	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
\mathbf{U}	\mathbf{V}	\mathbf{W}	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}	\mathbf{I}	\mathbf{J}	\mathbf{K}	\mathbf{L}	\mathbf{M}	\mathbf{N}	\mathbf{O}	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}

GSW

MY CAT HAS FLEAS

- One piece of information is needed for decryption: shift value
- Trivially easy to crack
(25 possibilities for a 26-character alphabet)

Monoalphabetic substitution cipher

Monoalphabetic = constant mapping between plaintext and ciphertext
General case: arbitrary mapping
(instead of a Cæsar cipher, where the letters are in an alphabetic sequence but shifted)
Both sides must have the same substitution alphabet

Monoalphabetic substitution cipher

Easy to decode: vulnerable to frequency analysis

Moby Dick (1.2M chars)		Shakespeare (55.8M chars)		Common digrams$\begin{aligned} & \text { TH (3.56\%), HE (3.07\%), II } \\ & (2.43 \%), \text { ER (2.05\%), AN, } \end{aligned}$RE, ...
e	12.300\%	e	11.797\%	
\bigcirc	7.282\%	\bigcirc	8.299\%	
d	4.015\%	d	3.943\%	Common trigrams
b	1.773\%	b	1.634\%	THE, ING, AND, HE
x	0.108\%	x	0.140\%	

Shannon Entropy

Shannon Entropy is a measure of the uncertainty or randomness in a set of data

$$
H(X)=-\sum P(x) \log _{2} P(x)
$$

where $P(x)$ is the probability of occurrence of a particular outcome x

It gives a measure of the amount of information in bits

- High entropy = more randomness
\Rightarrow which is what we want for ciphertext

Claude Shannon

Entropy

- If all letters were equally probable, the entropy would be $\log _{2} 26=4.70$ bits of information per byte
- Moby Dick text: entropy $=4.175$
- Shakespeare texts: 4.19
- Monoalphabetic substitution ciphers don't increase entropy
- Increase entropy by enabling the same character to be encrypted differently in different parts of the message

Polyalphabetic substitution ciphers

- Designed to thwart frequency analysis techniques
- Different ciphertext symbols can represent the same plaintext symbol $1 \rightarrow$ many relationship between letter and substitution
- Leon Battista Alberti: 1466
- Two disks
- Line up predetermined letter on inner disk with outer disk
- Plaintext on inner \rightarrow ciphertext on outer
- After n symbols, the disk is rotated to a new alignment

encrypt: $\mathrm{A} \rightarrow \mathrm{g}$ decrypt: $\mathrm{g} \rightarrow \mathrm{A}$
$3^{2}+12 A B C O^{2}$
$345181718 \mathrm{rg}_{20}$

Vigenère polyalphabetic cipher

Blaise de Vigenère, court of Henry III of France, 1518

No need for a disk: use table and key word to encipher a message

```
A
AABCDEFGHIJKLMNOPQRSSTUVWXYZ
B BCDEFGHI JKLMNOPQRSTUVWXYZA
CCDEFGH I JKLMNOPQRSTUVWXYZA B
D DEFGHIJKLMNOPPQRSTUVWXYZAABC
E EFGHI JKLMNOPQR STUVWXYZA B CD
FFGHI JKLMNOPPQRSTUVWXYZABCDE
GGHI JKLMNOPQRSSTUVWXYZAABCDEEF
HH I JKLMNOPQRRSTUVWXYZABCDEEFG
I I JKLLMNOPPQRSTUVWX YZABCDDE F GH
JJKLMNOPQRSTUVVW Y Z A B CDE F GH I
KKLMNOPQRSTUVWXYZABCDEFGGHIJ
LLMNOPPQRSTUVWXYZABCDEFGHIJK
```



```
N NOOP Q R S TUVW X YZ A B CDDEFGGHI JK L M
O OPQR STUVWXYZA BCDEFGHIJJKLMN
P P QR STUVWX Y Z A B CDE FGH I JKLMNO
QQRSTUVWXYZ A BCDEFGHI JKLMNOP
R RSTUVWXYZABCDEFGHIJKLMNOPQ
S S TUVWX Y Z A B CDEFFGHII JKLMNOOPQR
TTUVWXYZABCDEFGHIJKLMNOPQRS
UUVWXYZ A B CDEFFGHHIJKLMNNOPQQRST
VVWXYZA B CDEFGHIJKLMNNOPQQRSTU
WWXYZA B CDEEFGH I JKLMNOPQQR STUV
XXYZA B CDEFGGHIJKLMNOPQQRSTUVW
Y YZA BCDEFGHIJKLMNOPQRRSTUVWX
```


Vigenère polyalphabetic cipher

- Repeat keyword over text: (e.g., key=FACE)

Keystream: FA CEF ACE FACEF
Plaintext: MY CAT HAS FLEAS

- Encrypt: find intersection:
row = keystream letter
column = plaintext (message) letter
- Decrypt: find column
- Row = keystream letter, search for ciphertext
- Column heading = plaintext letter
- Message is encrypted with as many substitution ciphers as there are unique letters in the keyword
 B BCDEFGH I JKLMNOPQRSSTUVWXYZA C C D E F G H I J K L M N OPP Q R S T U V W X Y Z A B DDEFGHIJKLMNOPQRSTUVWXYZABC EEFGH I JKLMNOPQRSTUVWXYZABCD FFGHIJKLMNOPQRSTUVWXYZABCDE GGHIJKLMNOPQRSTUVWXYZABCDEF H H I JKLMNOPQRSTUVWXYZABCDEFG I I J K L M N O P Q R S T U V W X Y Z A B C D E F G H JJJKLMNOPQRSTUVWXYZABCDEFGH I KK L M N OP Q R S T U V W X Y Z A B C DEFGB I J LLMNOP OR S TUVWXYZA BCDEFGBIJK $M M N O P Q R S T U V W X Y Z A B C D E F G H I J K L$ N NOP QR S TUVWXYZABCDEFGHIJKLM OOP QR STUVWXYZABCDEFGHIJKLMN P P Q R S TUVWX Y Z A B CDEFGH I JKLMNO Q Q R S TUVWX Y Z A B C D E F GHIIJKLMNOP R R S TUVWX YZA B CDEFGHIJK L M N O P Q S S TUVWXYZABCDEFGHIJKLMNOPQR $T T U V W X Y Z A B C D E F G H I J K L M N O P Q R S$ UUVWXYZABCDEFGHIJKLMNOPQRST $V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U$ WW X Y Z A B C DEFGH I JKLMNOP QR S T U V $X X Y Z A B C D E F G H \quad J \quad K L M N O P Q R S T U V W$ Y Y Z A BCDEFGH I JKLMNOPQRSTUVWX $Z Z A B C D E F G H I \quad J K L M N O P Q R S T U V W X Y$

FA CEF ACE FACEF
MY CAT HAS FLEAS
R

	B	C	D					H		J	K	L	M	N		P					U			\mathbf{x}		
B	C	D	E	F	G		H		J	K	L	M	N	0		Q	R	S	T	U				Y	Z	
C	D	E		G	H					L	M	N	O	P	Q	R	S	T	U	V	W			Z	A	
D	E	F	G	H						M	N	0	P	Q	R	S	T	U	V	W	X		2	A	B	
E	F	G	H	1					M	N	O	P	Q	R	S	T		V		X	Y	z		B	c	
\mathbf{F}	G	H	1	J	K				N	0	P	Q	R	S	T	U		W	X	Y	Z	A		C	D	
\mathbf{G}	H	1	J	K	L				O	P	Q	R	S		-	V		X	Y	Z	A	B	C	D	E	
		J																				C				

FA CEF ACE FACEF
MY CAT HAS FLEAS
RY

	B	C	D	E												0	P			S		U					
B	C	D	E	F	G		H		J	K	L	M	N	N 0	0	P	Q	R	S	T	U	V	W				
C	D	E	F	G	H				K	L					P	Q	R	S	T	U	V	W	X		Z	A	
D	E	F	G	H					L	M					Q	R	S	T	U	V	W	X	Y	2	A	B	
	F	G	H						M	N					R	S	T		V	W	X	Y	Z		B	C	
	G	H	1	J	J K				N	0		Q	Q	R	S	T	U		W	X	Y	Z	A			D	
	H	1	J	K	K				0	P	Q	R	S	S		U	V	W	X	Y	Z	A	B		D	E	
		J								Q										Z			C				

FA CEF ACE FACEF
MY CAT HAS FLEAS
RY E

		C															P	Q							X		
B	C	D		F	G	G	H		J	K	L	M	N	N	0	P	Q	R	5	T	U	V	W		Y	Z	
C										L	M		N			Q	R	S	T	U	V	W	X		Z	A	
D	E	F								M					Q	R	S	T	U	V	W	X	Y		A	B	
E	F	G							M	N							T	U	V	W	X		Z	A	B	C	
F	G	H								0							U	V	W	X	Y		A	B	C	D	
G	H	H	1 J		K L				O	P	Q		R	T		U	V	W	\mathbf{X}	Y	Z	A	B		D	E	
		J																		Z			C				

FA CEF ACE FACEF
MY CAT HAS FLEAS
RY EE

	B	C	D							J	K				N		P											
B	C	D	E	F	G		H		J	K	L		M		0	P	Q	R	S	T	T		V	W	X		Z	A
C	D	E	F	G	H				K	L	M		N		P	Q	R	S	T					X	Y	Z	A	
	E	F	G	H						M	N				Q	R	S	T	U		W			Y	Z	A	B	
	F	G	H		J				M	N				Q	R	S	T		V					Z	A	B	C	
F	G	H	1	J	K				N	0				R	S	T	U		W	X	X Y			A	B	C	D	
G	H	1	J		,				O	P				S	T	U	V		X					B	c	D	E	
		J																	Y					C				

FA CEF ACE FACEF
MY CAT HAS FLEAS
RY EEY

	B	C	D	E												O	P				T		V				
B	C	D	E	F	G	G H	H			K	L	M	N	N 0	0	P	Q	R	S		U		W	X		Z	
C	D	E	F	G	H	H 1				L			N	$0 \cdot$	P	Q	R	S		U	V		X	Y	Z	A	
D	E	F	G	H			J K			M	N		P			R	S	T	U		W		X Y	Z	A	B	
	F	G	H						M	N						S	T	U			W		Z	A		C	
F	G	H	1	J	K				N	0	P	Q	Q	R		T	U	V	W		Y		A	B		D	
	H	1	J	K					O	P	Q	R	S	S		U	V		X		Z		B	C		E	
		J																					C				

```
FA CEF ACE FACEF
MY CAT HAS FLEAS
RY EEY HCW KLGEX
```

	B	C	D	E												O	P			S	T						Z
B	C	D	E	F	G	H				K	L	M		N	O	P	Q	R	S	T	U		W	X	Y	Z	A
\mathbf{C}	D	E	F	G	H					L	M	N			P	Q	R	S	T	U	V	W	X	Y	Z	A	
	E	F	G	H	1					M	N				Q	R	S	T	U		W	X		Z	A	B	
E	F	G	H	1	J		K L			N	O				R	S	T	U	V	N	X	Y	Z	A	B	C	
	G	H	,	J	K		N			0	P				S	T	U		W		,	Z	A	B	C	D	
	H	1	J	K	L	N			O	P	Q	R			T	U	V	W	X	Y	Z	A	B	C	D	E	
			K															X			A	B		D	E		

Vigenère polyalphabetic cipher

"The rebels reposed their major trust, however, in the Vigenère, sometimes using it in the form of a brass cipher disc. In theory, it was an excellent choice, for so far as the South knew the cipher was unbreakable. In practice, it proved a dismal failure. For one thing, transmission errors that added or subtracted a letter ... unmeshed the key from the cipher and caused no end of difficulty. Once Major Cunningham of General Kirby-Smith's staff tried for twelve hours to decipher a garbled message; he finally gave up in disgust and galloped around the Union flank to the sender to find out what it said."

Cryptanalysis of the Vigenère cipher

Hard to break with long keys and small amounts of ciphertext in the 1800s

Cryptanalysis of the Vigenère cipher

1. Determine key length

- Count coincidences - identical sets of characters n characters apart
- Key length is likely to be the separation with the maximum \# of coincidences

2. Determine values of each character of the key

- You know the length of the key - that's the \# of Caesar ciphers you have
- Do a frequency analysis of each position of the key

One-time pad

We can achieve maximum entropy by having a truly random key that is as long as the message

- Invented in 1917
- Large non-repeating set of random key letters originally written on a pad

CIHJT UたHIL FRUGC ZIBGD BQPKI PDNJG LPLLP YJYXM DCXAC JSJUK BIOYT MWOPX DLIRC BEXYK TKIMB TYIPE UOLYQ OKOXH PIJKY DRDBC GEFZG UACKD RARCD HBYRI DZJYO YKAIE LIUYT DFOHU IOHZY SRNDD KPSSO JHPQT $\triangle H O H L$ OHDQD SMFRP HHOHD GXRPJ XBXIP LLZA TCMOG AWSSZ YTFNI ATHON IXPBY FOZLE CTYSJ XZGPU CTFQY HOVHU OCJGU QMWQT OIGOR BFK工Z TYFDB TBRIR XMLZC

- Each key letter on the pad encrypts exactly one plaintext character
- Encryption is addition of characters modulo alphabet size (26)
- Sender destroys pages that have been used
- Receiver maintains identical pad

The one-time pad is the only provably secure encryption scheme

Some one-time pads

A Russian One-time pad, captured by MI5 Photo from ramnum.com. Used with permission

© Dirk Rijmenants. Used with permission

One-time pad

If pad contains
KWXOPWMAELGHW...
and we want to encrypt
MY CAT HAS FLEAS

Ciphertext =

WUZOIDMSJWKHO

$$
\begin{aligned}
& \mathrm{M}+\mathrm{K} \bmod 26=\mathrm{W} \\
& \mathrm{Y}+\mathrm{W} \bmod 26=\mathrm{U} \\
& \mathrm{C}+\mathrm{X} \bmod 26=\mathrm{Z} \\
& \mathrm{~A}+\mathrm{O} \bmod 26=\mathrm{O} \\
& \mathrm{~T}+\mathrm{P} \bmod 26=\mathrm{I} \\
& \mathrm{H}+\mathrm{W} \bmod 26=\mathrm{D} \\
& \mathrm{~A}+\mathrm{M} \bmod 26=\mathrm{M} \\
& \mathrm{~S}+\mathrm{A} \bmod 26=\mathrm{S} \\
& \mathrm{~F}+\mathrm{E} \bmod 26=\mathrm{J} \\
& \mathrm{~L}+\mathrm{L} \bmod 26=\mathrm{W} \\
& \mathrm{E}+\mathrm{G} \bmod 26=\mathrm{K} \\
& \mathrm{~A}+\mathrm{H} \bmod 26=\mathrm{H} \\
& \mathrm{~S}+\mathrm{W} \bmod 26=\mathrm{O}
\end{aligned}
$$

One-time pad

The same ciphertext can decrypt to anything depending on the key!	$\begin{aligned} & \mathrm{W}-\mathrm{D} \bmod 26=\mathrm{T} \\ & \mathrm{U}-\mathrm{N} \bmod 26=\mathrm{H} \\ & \mathrm{Z}-\mathrm{V} \bmod 26=\mathrm{E} \end{aligned}$
	$0-L \bmod 26=D$
Same ciphertext:	$\mathrm{I}-\mathrm{U} \bmod 26=0$
	D - $\mathrm{X} \bmod 26=G$
WUZOIDMS JWKHO	$\mathrm{M}-\mathrm{E} \bmod 26=\mathrm{I}$
With a pad containing:	$\mathrm{S}-\mathrm{A} \bmod 26=S$
DNVLUXEACWVSQ...	$J-C \bmod 26=H$
	$\mathrm{W}-\mathrm{W} \bmod 26=\mathrm{A}$
Produces:	$\mathrm{K}-\mathrm{V} \bmod 26=P$
THE DOG IS HAPPY	H-S mod $26=P$
IHE DOG IS HAPPY	O - Q mod 26

One-time pads in computers

Can be extended to binary data

- Random key sequence as long as the message
- Exclusive-or key sequence with message
- Receiver has the same key sequence

One-time pad - C code

```
void onetimepad(void)
\(\{\)
    FILE *if = fopen("intext", "r");
    FILE *kf = fopen("keytext", "r");
    FILE *of = fopen("outtext", "w");
    int \(\mathrm{c}, \mathrm{k}\);
    while ((c = getc(if)) != EOF) \{
        \(\mathrm{k}=\operatorname{getc}(\mathrm{kf})\);
        putc((c^k), of);
    \}
    fclose(if); fclose(kf); fclose(of);
\}
```

Digression: exclusive-or

AND (\wedge): clears bits

AND clears bits

- AND 1 - keep the bit
- AND 0 - clear the bit

Truth table

$$
\begin{aligned}
& 1 \wedge 1=1 \\
& 1 \wedge 0=0 \\
& 0 \wedge 1=0 \\
& 0 \wedge 0=0
\end{aligned}
$$

If you clear a bit, you will never know if it used to be a 0 or a 1

OR (v): sets bits

OR sets bits

- OR 1 - set the bit
- OR 0 - keep the bit

Truth table

$$
\begin{aligned}
& 1 \vee 1=1 \\
& 1 \vee 0=1 \\
& 0 \vee 1=1 \\
& 0 \vee 0=0
\end{aligned}
$$

If you set a bit, you will never know if it used to be a 0 or a 1

XOR (\oplus): flips bits

XOR flips bits

- XOR 1 - flip the bit
- XOR 0 - keep the bit as it is

Truth table

$$
\begin{aligned}
& 1 \oplus 1=0 \\
& 1 \oplus 0=1 \\
& 0 \oplus 1=1 \\
& 0 \oplus 0=1
\end{aligned}
$$

If you flip a bit, you can restore it by XORing it with 1 again

We use XOR operations a lot in cryptography

They allow us to flip certain bits to encrypt and later unflip to decrypt

0	1	1	1	0	0	0	0		0	1	1	0	1	0	1	1
\oplus	1	0	1	0	1	1	0	0		1	0	1	1	1	0	0

$$
\begin{aligned}
& \text { plaintext }=0 \times 700 \times 6 \mathrm{~b} \\
& \oplus \text { key }=0 x a c \quad 0 x b 9 \\
& \text { ciphertext }=0 x d c \quad 0 x d 2 \\
& \oplus \text { key }=0 \mathrm{xac} 0 \mathrm{xb} 9 \\
& \text { result }=0 \times 700 \times 6 \mathrm{~b} \\
& \text { plaintext recovered! }
\end{aligned}
$$

End of digression

One-time pads provide perfect secrecy

Perfect secrecy

- Ciphertext conveys no information about the content of plaintext
- Achieved only if the key is random and as long as the plaintext

Problems with one-time pads:

- Key needs to be as long as the message!
- Key storage and distribution can be problematic
- Keys have to be generated randomly
- Cannot use pseudo-random number generator
- Cannot reuse key sequence
- Sender and receiver must remain synchronized (e.g., cannot lose any part of the message)

Random numbers

"Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin"

- John von Neumann, 1951
- Pseudo-random generators
- Linear feedback shift registers
- Multiplicative lagged Fibonacci generators
- Linear congruential generator
- Obtain randomness from:
- Time between keystrokes
- Various network/kernel events
- Cosmic rays

- Electrical noise
- Other encrypted messages

Ongoing research for random number generators

Researchers use tiny magnetic swirls to generate true random numbers

by Brown University
February 7, 2022

Whether for use in cybersecurity, gaming or scientific simulation, the world needs true random numbers, but generating them is harder than one might think. But a group of Brown University physicists has developed a technique that can potentially generate millions of random digits per second by harnessing the behavior of skyrmions-tiny magnetic anomalies that arise in certain two-dimensional materials.

Their research, published in Nature Communications, reveals previously unexplored dynamics of single skyrmions, the researchers say. Discovered around a half-decade ago, skyrmions have sparked interest in physics as a path toward next-generation computing devices that take advantage of the magnetic properties of particles - a field known as

Magnetic swirls called skyrmions fluctuate randomly in size, a behavior that can be harnessed to generate true random numbers. Credit: Xiao lab / Brown University
https://phys.org/news/2022-02-tiny-magnetic-swirls-true-random.html

Electro-mechanical cryptographic engines

Rotor machines

1920s: mechanical devices used for automating encryption

Rotor machine:

- Set of independently rotating cylinders (rotors) through which electrical pulses flow
- Each rotor has input \& output pin for each letter of the alphabet
- Each rotor implements a substitution cipher
- Output of each rotor is fed into the next rotor
- Together they implement a version of the Vigenère cipher

Rotor machines

Simplest rotor machine: single cylinder

After a character is entered, the cylinder rotates one position

- Internal connections shifted by one
- Polyalphabetic substitution cipher with a period of 26

Single cylinder rotor machine

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

$$
\begin{array}{lllllllllllllllllllllllllll}
A & B & C & D & E & F & G & H & I & J & K & L & M & N & O & P & Q & R & S & T & U & V & W & X & Y & Z \\
K & H & W & J & M & D & N & C & R & G & L & E & P & T & Q & Z & I & S & F & V & A & O & Y & B & U & X
\end{array}
$$

Multi-cylinder rotor machines

- Single cylinder rotor machine
- Substitution cipher with a period $=$ length of alphabet (e.g., 26)
- Multi-cylinder rotor machine
- Feed output of one cylinder as input to the next one
- First rotor advances after character is entered
- Second rotor advances after a full period of the first
- Polyalphabetic substitution cipher
- Period $=$ (length of alphabet) $)^{\text {number of rotors }}$
- 326 -char cylinders $\Rightarrow 26^{3}=17,576$ substitution alphabets
- 526 -char cylinders $\Rightarrow 26^{5}=11,881,367$ substitution alphabets

Enigma

- Enigma machine used in Germany during WWII
- Three rotor system
$-26^{3}=17,576$ possible rotor positions
- Input data permuted via patch panel before sending to rotor engine
- Data from last rotor reflected back through rotors \Rightarrow makes encryption symmetric
- Need to know initial settings of rotor
- setting was f(date) in a book of codes
- Broken by group at Bletchley Park (Alan Turing)

Enigma

Classic Cryptosystems: Transposition Ciphers

Transposition ciphers

- Permute letters in plaintext according to rules
- Knowledge of rules will allow message to be decrypted
- First documented use by Spartans in the $5^{\text {th }}$ century BCE
- Scytale (rhymes with Italy) = staff cipher

Transposition ciphers

- Mix up letters
- Split common letter sequences to increase entropy of digraphs and trigraphs

Transposition ciphers: scytale

Secret $=$ diameter of scytale

Transposition ciphers: scytale

Transposition ciphers: scytale

Transposition ciphers: scytale

Transposition ciphers: scytale

Scytale as a set of columns

Table version of scytale

- Enter data horizontally, read it vertically
- Secrecy is the width of the table

Scytale as a set of columns

Table version of scytale

- Enter data horizontally, read it vertically
- Secrecy is the width of the table

Scytale as a set of columns

Table version of scytale

- Enter data horizontally, read it vertically
- Secrecy is the width of the table

Scytale as a set of columns

Table version of scytale

- Enter data horizontally, read it vertically
- Secrecy is the width of the table

Scytale as a set of columns

Table version of scytale

- Enter data horizontally, read it vertically
- Secrecy is the width of the table

Columnar transposition cipher

Add a key

- Created in the mid 1600s - used by the French, Japanese, \& Russians into the $20^{\text {th }}$ century
- Key word defines the width of the table and the sequence of reading the columns
- Read down columns, sorting by key letters

Columnar transposition cipher

Add a key

- Shuffle columns based on the sorting of letters in the key word
- Read down columns

Columnar transposition cipher

Add a key

- Shuffle columns based on the sorting of letters in the key word
- Read down columns

Columnar transposition cipher

Add a key

- Shuffle columns based on the sorting of letters in the key word
- Read down columns

Columnar transposition cipher

Add a key

- Shuffle columns based on the sorting of letters in the key word
- Read down columns

Columnar transposition cipher

Add a key

- Shuffle columns based on the sorting of letters in the key word
- Read down columns

Transposition cipher

- Not vulnerable to frequency analysis
- Entropy of characters does not change
- But the entropy of digraphs and trigraphs increases because common sequences are broken through scrambling the characters
- Scytale trivial to attack
- Make all possible matrices that would fit the ciphertext
- Write ciphertext across rows
- See if the columns contain legible content
- Scrambled columns make it a bit harder
- Need to permute columns of matrices

Combined ciphers

- Combine transposition with substitution ciphers
- German ADFGVX cipher (WVI)
- Great for increasing entropy
- But was troublesome to implement (before computers)
- Difficult with pencil-and-paper or electromechanical cryptography
- Requires memory to store blocks of data for transposition

Computer Cryptography

Properties

- Operate on arbitrary binary data: $P=\{0,1\}^{n}$
- Kerckhoffs's Principle: the secrecy resides in the key
- Shannon's properties
- Confusion: no direct correlation between a bit of the key and the resulting ciphertext
- Diffusion: Changing one bit of input should change, on average, $1 / 2$ of output bits
- Main mechanisms

Block ciphers

Block ciphers dominate computer cryptography

Encrypt a fixed number of bits (a block) at a time
Output blocksize (usually) == input blocksize

Key (m bits) \longrightarrow| Block cipher |
| :---: |
| \downarrow |
| Ciphertext $(n$ bits $)$ |

Block ciphers

- Block ciphers encrypt a block of plaintext at a time
- DES \& AES are two popular block ciphers
- DES: 64-bit blocks
- AES: 128-bit blocks
- Block ciphers are usually iterative ciphers
- The encryption process is an iteration through several round operations
- A single round does not provide perfect confusion or diffusion

Structure of block ciphers

- Multiple rounds of combining the plaintext with the key
- Optional:
- Convert key to an internal subkey - different for each round
- DES: 16 rounds
- AES: 10-14 rounds, depending on key length

Sounds easy ... but is difficult to design

Block cipher rounds

Each round consists of substitutions \& permutations = SP Network

Substitution = S-box

- Table lookup
- Converts a small block of input to a block of output

Permutation

- Scrambles the bits in a prescribed order

Key application per round

- Subkey, K_{n}, per round derived from the key
- Can drive behavior of s-boxes
- May be XORed with the output of each round

Create Confusion \& Diffusion

- Confusion: no direct correlation between a bit of the key and resulting ciphertext
- Diffusion: Changing one bit of input should change, on average, $1 / 2$ of output bits

Data Encryption Standard

- Developed in the early 1970s by IBM and modified by the NSA
- Adopted as a federal standard in 1976
- Block cipher, 64-bit blocks, 56-bit key
- Substitution followed by a permutation
- Transposition and XORs based on a subkey derived from the key
- 16 rounds

Feistel cipher

- DES is a type of Feistel cipher, which is a form of a block cipher
- Plaintext block is split in two
- Round function applied to one half of the block
- Output of the round function is XORed with the other half of the block
- Halves are swapped
- This is a Feistel Network rather than an SP Network

DES

DES: f per round

S-boxes

P-box

DATA: left 32 bits | New DATA: |
| :--- |
| right 32 bits |

- After compressed key is XORed with expanded block
- 48-bit result moves to substitution operation via
eight substitution boxes (s-boxes)
- Each S-box has
- 6-bit input
- 4-bit output

- 48 bits divided into eight 6-bit sub-blocks
- Each block is operated by a separate S-box
- Net result: 48-bit input generates 32-bit output
- S-boxes are key components of DES's security

S-boxes are used in symmetric block ciphers to add confusion: hide the relationship of any ciphertext from any plaintext \& key bits.

Implemented as a table lookup

Is DES secure?

-56-bit key makes DES relatively weak
$-2^{56}=7.2 \times 10^{16}$ keys

- Brute-force attack
- By the late 1990's:
- DES cracker machines built to crack DES keys in a few hours
- DES Deep Crack: 90 billion keys/second
- Distributed.net: tested 250 billion keys/second
- 2000s < 1 day
- 2006: COPACOBANA: Custom FPGA-based DES cracker for $<\$ 10,000$
- 2012: cloud-based service
crack MS-CHAPv2 authentication (which uses DES) on sale for $\$ 20$ vs. $\$ 200$

Can double encryption work for DES?

Useless if we could find a key K such that:

$$
E_{K}(P)=E_{K 2}\left(E_{K 1}(P)\right)
$$

This does not hold for DES (luckily!)

Vulnerable to meet-in-the-middle attack

If we know some pair (P, C), then:
[1] Encrypt P for all 2^{56} values of K_{1}
[2] Decrypt C for all 2^{56} values of K_{2}

For each match where [1] $==$ [2]

- Test the two keys against another P, C pair
- If match, you are assured that you have the key
- The complexity is 2×2^{56} rather than 2×56

Triple DES key lengths

Triple DES with two 56-bit keys (112-bit key):

$$
\mathrm{C}=\mathrm{E}_{\mathrm{K} 1}\left(\mathrm{D}_{\mathrm{K} 2}\left(\mathrm{E}_{\mathrm{K} 1}(\mathrm{P})\right)\right)
$$

Triple DES with three 56-bit keys (168-bit key):

$$
\mathrm{C}=\mathrm{E}_{\mathrm{K} 3}\left(\mathrm{D}_{\mathrm{K} 2}\left(\mathrm{E}_{\mathrm{K} 1}(\mathrm{P})\right)\right)
$$

Decryption used in middle step for compatibility with DES $\left(\mathrm{K}_{1}=\mathrm{K}_{2}=\mathrm{K}_{3}\right)$

$$
C=E_{K}\left(D_{K}\left(E_{K}(P)\right)\right) \equiv C=E_{K 1}(P)
$$

DES Disadvantages

- DES has been shown to have some weaknesses
- Key can be recovered using 2^{47} chosen plaintexts or 2^{43} known plaintexts
- Note that this is not a practical amount of data to get for a real attack!
- Short block size (8 bytes $=2^{8}=64$ bits)
- The real weakness of DES is its 56-bit key
- Exhaustive search requires 2^{55} iterations on average
- 3DES solves the key size problem: we can have keys up to 168 bits
- Differential \& linear cryptanalysis is not effective here: the three layers of encryption use 48 rounds instead of 16 making it infeasible to reconstruct s-box activity
- But DES is relatively slow - and 3DES is $3 x$ slower
- It was designed with hardware encryption in mind: and 3DES is $3 x$ slower than DES

AES (Advanced Encryption Standard)

- U.S. NIST held a competition for a new algorithm
- Received 15 submissions
- No NSA tampering allowed
- Three variations (key lengths) of the Rijndael family of ciphers won
- Block cipher: 128-bit blocks
- AES is not a Feistel cipher - it uses the entire block in each round
- DES used 64-bit blocks but encrypted half the data in each round
- Successor to DES as a standard encryption algorithm
- DES: 56-bit key
- AES: 128, 192, or 256-bit keys

AES ... successor to DES

From NIST:

Assuming that one could build a machine that could recover a DES key in a second (i.e., try 2^{56} keys per second), then it would take that machine approximately 149 trillion years to crack a 128-bit AES key. To put that into perspective, the universe is believed to be less than 20 billion years old.

AES (Advanced Encryption Standard)

- Iterative cipher, just like most other block ciphers
- Each round is a set of substitutions \& permutations
- Variable number of rounds
- DES always used 16 rounds
- AES:
- 10 rounds: 128-bit key
- 12 rounds: 192-bit key
- 14 rounds: 256-bit key
- A subkey ("round key") derived from the key is computed for each round - DES used this too

Each AES Round

- Step 1: Byte Substitution (s-boxes)

- Substitute 16 input bytes by looking each one up in a table (s-box)
- Result is a 4×4 matrix
- Step 2: Shift rows
- Each row is shifted to the left (wrapping around to the right)
- $1^{\text {st }}$ row not shifted; $2^{\text {nd }}$ row shifted 1 position to the left; $3^{\text {rd }}$ row shifted 2 positions; $4^{\text {th }}$ row shifted three positions
- Step 3: Mix columns
- 4 bytes in each column are transformed
- This creates a new 4×4 matrix

Byte Substitution

Shift rows (permutation)

Mix columns (permutation)

- Step 4: XOR round key
- XOR the 128 bits of the round key with the 16 bytes of the matrix in step 3

XOR round key
(substitution)

AES Decryption

Same rounds

 ... but in reverse order
XOR round key

 (substitution)Mix columns (permutation)

Shift rows (permutation)

Byte Substitution

AES Advantages

- Larger block size: 128 bits vs 64 bits
- Larger \& varying key sizes: 128, 192, and 256 bits
- 128 bits is complex enough to prevent brute-force searches
- No significant academic attacks beyond brute force search
- Resistant against linear cryptanalysis thanks to bigger S-boxes
- S-box = lookup table that adds non-linearity to a set of bits via transposition \& flipping
- DES: 6-bit inputs \& 4-bit outputs
- AES: 8-bit inputs \& 8-bit outputs
- Typically 5 -10x faster in software than 3DES

Attacks against AES

- Attacks have been found
- This does not mean that AES is insecure!
- Because of the attacks:
- AES-128 has computational complexity of $2^{126.1}$ (~126 bits)
- AES-192 has computational complexity of $2^{189.7}$ (~190 bits)
- AES-256 has computational complexity of $2^{254.9}$ (~255 bits)
- Increasing AES security
- The security of AES can be increased by increasing the number of rounds in the algorithm
- However, AES-128 still has a sufficient safety margin to make exhaustive search attacks impractical

Stream ciphers - simulate a one-time pad

Key stream generator produces a sequence of pseudo-random bytes

Stream ciphers

Never reuse a key

$$
\begin{aligned}
& C=A \oplus K \\
& C^{\prime}=B \oplus K \\
& C \oplus C^{\prime}=A \oplus K \oplus B \oplus K=A \oplus B
\end{aligned}
$$

With known plaintext A and the corresponding ciphertext C, extract the key:

$$
\mathrm{K}=\mathrm{A} \oplus \mathrm{C}
$$

Popular symmetric block ciphers

$\left.\begin{array}{l|l}\hline \text { AES (Advanced } & \begin{array}{l}\text { - FIPS standard since 2002 } \\ \text { - } \\ \text { Encryption Standard) } \\ \text { - By far the most widely }\end{array} \\ \hline \text { DES (Data Encd symmetric encryption algorithm }\end{array}\right\}$

Cipher modes

Not a good idea to use block ciphers directly

- Streams of data are broken into k-byte blocks
- Each block encrypted separately
- This is called Electronic Codebook (ECB)
- Problems

1. Same plaintext results in identical encrypted blocks Enemy can build up a code book of plaintext/ciphertext matches
2. Attacker can add/delete/replace blocks

Cipher Block Chaining (CBC) mode

- Random initialization vector (IV) = bunch of k random bits
- Non-secret: both parties need to know this
- Exclusive-or with first plaintext block - then encrypt the block
- Take exclusive-or of the result with the next plaintext block

$$
c_{i}=E_{k}\left(m_{i}\right) \oplus c_{i-1}
$$

Block 0

Block 1

Block N

CBC Observations

- Identical plaintext does not produce the same ciphertext - Unless all previous blocks are identical
- Each block is a function of all previous blocks
- An attacker can still cause data corruption

Block encryption: Counter (CTR) mode

- Random starting counter = bunch of k random bits, just like IV
- Any function producing a non-repeating sequence (an incrementing number is a common function)
- Encrypt the counter with the key
- Exclusive-or result with plaintext block

Cryptanalysis

Cryptographic attacks

- Chosen plaintext
- Attacker can create plaintext and see the corresponding ciphertext
- Known plaintext
- Attacker has access to both plaintext \& ciphertext but doesn't get to choose the text
- Ciphertext-only
- The attacker only sees ciphertext
- Popular in movies but rarely practical in real life

Differential Cryptanalysis

Examine how changes in input affect changes in output

- Discover where a cipher exhibits non-random behavior
- These properties can be used to extract the secret key
- Applied to block ciphers, stream ciphers, and hash functions (functions that flip \& move bits vs. mathematical operations)
- Chosen plaintext attack is normally used
- Attacker must be able to choose the plaintext and see the corresponding cipher text

Differential Cryptanalysis

- Provide plaintext with known differences
- See how those differences appear in the ciphertext
- The properties depend on the key and the s-boxes in the algorithm
- Do this with lots and lots of known plaintext-ciphertext sets
- Statistical differences, if found, may allow a key to be recovered faster than with a brute-force search
- You may deduce that certain keys are not worth trying

Linear Cryptanalysis

Create a predictive approximation of inputs to outputs

- Instead of looking for differences, linear cryptanalysis attempts to come up with a linear formula (e.g., a bunch of xor operations) that connects certain input bits, output bits, and key bits with a probability higher than random
- Goal is to approximate the behavior of s-boxes
- Part 1: construct linear equations
- Find high correlations
- Part 2: guess key bits
- Guess enough bits so that a brute force attack becomes feasible

Linear Cryptanalysis

It will not recreate the working of the cipher

- You just hope to find non-random behavior that gives you insight on what bits of the key might matter
- Works better than differential cryptanalysis for known plaintext
- Differential cryptanalysis works best with chosen plaintext
- Linear \& differential cryptanalysis will rarely recover a key but may be able to reduce the number of keys that need to be searched

The End

[^0]: | \mathbf{A} | \mathbf{B} | \mathbf{C} | \mathbf{D} | \mathbf{E} | \mathbf{F} | \mathbf{G} | \mathbf{H} | \mathbf{I} | \mathbf{J} | \mathbf{K} | \mathbf{L} | \mathbf{M} | \mathbf{N} | \mathbf{O} | \mathbf{P} | \mathbf{Q} | \mathbf{R} | \mathbf{S} | \mathbf{T} | \mathbf{U} | \mathbf{V} | \mathbf{W} | \mathbf{X} | \mathbf{Y} |
 | :--- | | \mathbf{U} | \mathbf{V} | \mathbf{W} | \mathbf{X} | \mathbf{Y} | \mathbf{Z} | \mathbf{A} | \mathbf{B} | \mathbf{C} | \mathbf{D} | \mathbf{E} | \mathbf{F} | \mathbf{G} | \mathbf{H} | \mathbf{I} | \mathbf{J} | \mathbf{K} | \mathbf{L} | \mathbf{M} | \mathbf{N} | \mathbf{O} | \mathbf{P} | \mathbf{Q} |
 | :--- | $\mathbf{R} \mathbf{S} . \mathbf{T}$

 \longrightarrow shift alphabet by n (6)

