Week 0: About the Class
Welcome to computer security
About Me

- AT&T Bell Laboratories
- Lucent Technologies
- Start-ups
 - NetDox
 - IDMetrix
 - Face2Face
- StorageApps
- HP
- Verizon, AT&T
- Cisco
- BlackBerry
- Open Peak
- Xevo
- Toyota, GM, Ford
- Mazda, Honda, Subaru
- Fiat Chrysler, …
Web site and contact

web: www.cs.rutgers.edu/~pxk/419

mirror: www.pk.org/419

email: pxk@cs.rutgers.edu

phone: +142.59.79.35.02

zoom: https://rutgers.zoom.us/my/pxk.rutgers

Canvas: https://rutgers.instructure.com/courses/66088
Class info

- Contact info
- TA info
- Syllabus
- Lecture notes
- Class news
- Homework
Class meetings

- Classes will be held via Zoom
- Lecture recordings will be made available
 - YouTube? Canvas?
 - Web site
- You can take classes asynchronously
 - I’ll be around for questions
 - Send via zoom chat, email, etc.
 - I will post FAQs and corrections if needed
None required – but we will use several sources

Security Engineering: A Guide to Building Dependable Distributed Systems

2nd Edition

by Ross J. Anderson

Free at

https://www.cl.cam.ac.uk/~rja14/book.html

But mostly…

– Other reading material on the web
– Lecture slides
– Lecture notes/summaries
• **Weekly quizzes**: 5-6 questions; 15 minutes

• **Short programming assignments (~5)**
 – Individual assignments
 – Due prior to the due date

• **Written assignments**
 – Due prior to the due date
 – No MS-Word, Pages, InDesign submissions!
 – PDF or text with line breaks only (HTML for in-line text on sakai)

• **Collaboration & academic integrity**
 – Individual assignments – no copying!
Grades

- Quizzes ~ 50%
- 4-5 written assignments ~ 15%
- ~4-5 programming assignments ~35%
What this course IS

• Security engineering
• Understand why systems have weaknesses
• How do we deal with these weaknesses?
 – People, devices, networks, operating systems, applications
 – Cryptographic algorithms
 – Authentication & key distribution protocols
 – Ensuring integrity & confidentiality
Things we’ll cover

- **Intro: threats, risks, security needs**
- **Access control**
 - Core OS mechanisms for access control
 - Mandatory vs. discretionary access control
- **Code injection**
 - Buffer overflow, shell scripts, input validation
- **Client-side risks & protection**
 - Viruses, worms, trojans
 - Human factors
- **App confinement**
 - Jails, virtual machines, sandboxes
- **Cryptography**
 - Encryption
- **Integrity & key distribution**
 - Public keys, hashing, digital signatures
- **Authentication**
 - Passwords, tokens, biometrics, cards
- **Cryptocurrency**
 - Bitcoin, proof of work, proof of stake
- **Network security**
 - Switches, routers, services
- **Network protection**
 - Firewalls, VPNs
- **Web security**
- **Mobile security**
- **Anonymous communication**
 - Tor
- **Content protection**
 - Steganography, watermarking, DRM
- **IoT**
 - Security risks in embedded software
- **Forensics**
What this course is NOT

- How to write viruses/trojans/malware
- How to break into systems
- How to be a hacker
- Rigorous mathematics on systems, security, or cryptography
The End