Computer Security
17. Anonymous Connectivity & Tor

Paul Krzyzanowski
Rutgers University
Spring 2019
Anonymous Connectivity
Anonymous communication

Communicate while preserving privacy

Often considered bad: “only criminals need to hide”
- Drugs
- Hit men
- Stolen identities
- Counterfeit $
- Stolen credit cards
- Guns, hacking
- Bitcoin laundering
- Fraud
- Porn
Anonymous communication

Communicate while preserving privacy

But there are legitimate uses

– Avoid consequences (social, political, legal)
 • Accessing content in oppressive governments
 • E.g., political dissidents, whistleblowers, crime reporting
– Avoid geolocation-based services
– Hide corporate activity (who's talking to whom)
– Perform private investigations
– Hide personal info
 • searching for information about diseases you have, loans, credit problems
Anonymity on the Internet

Even without anonymity:

• Identification not possible in all cases
 – Real-world identification is usually too easy to subvert

• Even attribution may be faulty
 – E.g., malware on your system – part of botnet launching a DDoS attack
Some services retain information about you

• Accounts, configuration settings

• Cloud storage
 – Files, email, photos, blogs, web sites
 – Encryption so the server has no access not always possible

• Your interests, browsing history, messages
 – Important for data mining & targeted advertising
 – E.g., Facebook, Google
Cookies on the web

- Local *name=value* data stored at the browser & sent to a server
 - Avoids having to log in to a service repeatedly
 - Keeps track of session, shopping cart, preferences

- Associated with the site (same-origin policy)
 - Facebook cookies don't get sent to google … and vice versa

- **Tracking cookies** (third-party cookies)
 - Websites can embed resources from another site (e.g., `bugme.com`)
 - Via an ad in an iFrame or a 1x1 pixel image
 - `bugme.com`'s cookies will be sent to `bugme.com`
 - HTTP message contains a Referer header, which identifies the encompassing page
 - Lots of different sites may use `bugme.com`'s services
 - Bugme.com can now build a list of which sites the visitor has visited

- Most browsers have policies to block third-party cookies
Private Browsing

- Browsers offer a "private" browsing modes
 - Apple *Private Browsing*, Mozilla *Private Browsing*,
 Google Chrome *Incognito Mode*, Microsoft *InPrivate* browsing

- What do these modes do?
 - Do not send stored cookies
 - Do not allow servers to set cookies
 - Do not use or save auto-fill information
 - List of downloaded content
 - At the end of a session
 - Discard cached pages
 - Discard browsing & search history

Does not protect the user from viruses, phishing, or security attacks
Is private browsing private?

• It doesn't leave too many breadcrumbs on your device
• It limits the ability of an attacker to use cookies
• But
 – Your system may be logging outbound IP addresses
 – Web servers get your IP address
 • They can also correlate with past traffic
 – Proxies know what you did … so do firewalls & routers
 – Your ISP knows who you are and where you went
 – DNS servers know what addresses you're looking up
 • Some store and use this data

Answer: *not really*
Improvements to Chrome’s Incognito Mode

Detecting Incognito mode allows websites to block users if they cannot be tracked

• Services had a simple trick to determine whether a user is using Incognito Mode
 – Use FileSystem API – Chrome-specific method that gives a website a sandboxed file system for its own use
 – API is completely disabled in Incognito mode

• Near-term plan (early 2019)
 – Google will create a virtual file system in RAM
 – Will be erased when the user leaves Incognito Mode
Other browsers have similar problems

- **Firefox, IE/Edge**
 - `IndexedDB` is not available
 - Attempts to access it causes it to throw an `InvalidStateError`

- **Safari**
 - Disables its `localStorage` API in Private Browsing
 - An attempt to call the `setItem` method throws an exception

- **Older versions of IE10/Edge**
 - `IndexedDB` doesn’t even exist in privacy mode

- **Other techniques exist too**
 - Services can send code to check for private browsing modes and block users if they cannot be tracked
Encrypted sessions?

Great … eavesdroppers can't see the plaintext

But they can see where it's coming from and where it's going

The service knows your IP address & can track you
Surface Web
Deep Web
Dark Web
The different types of web

• Surface Web
 – **Web content that can be indexed by mainstream search engines**
 – Search engines use web crawlers
 • Go through a list of addresses from past crawls
 • Access pages provided as sitemaps by website owners
 • Traverse links on pages being crawled to find new content

• Deep Web
 – **Web content that a search engine cannot find**
 – Unindexed content, often from dynamically-generated pages
 – E.g., query results from libraries, govt and corporate databases
Part of the Deep Web that has been intentionally hidden

- Not accessible through standard browsers
 - Need special software, such as a **Tor browser**

- Servers do not register names with DNS
 - Sometimes use a .onion pseudo-top-level domain

- Still uses
 - HTML web pages
 - HTTP & FTP for moving content

- Illicit & legitimate services
 - Drugs, stolen identities, counterfeit $, etc.
 - Blackbook (similar to Facebook), recipes, books
 - Anonymous news access: https://www.nytimes3xbfgragh.onion/
Tor & Anonymous Connectivity
Tor & The Tor Browser

- Tor = The Onion Router

- Tor Browser = preconfigured web browser that uses Tor
 - Provides anonymous browsing

- Hosted on a collection of relays around the world
 - Run by non-profits, universities, individuals
 - Currently over 6,000

- 100K to millions of users
 - Exact data unknown – it's anonymous
 - Terabytes of data routed each second
History

• **Onion routing** developed in the mid 1990s at the U.S. Naval Research Laboratory to protect U.S. intelligence communications

• Additional work by the Defense Advanced Research Projects Agency (DARPA)

• Patented by the U.S. Navy in 1998
 – Naval Research Laboratory released to code for Tor under a free license

• The Tor Project
 – Founded in 2006 as a non-profit organization with support of the EFF
What is anonymity?

• **Unobservability**
 – Inability of an observer to leak participants to actions

• **Unlinkability**
 – Inability to associate an observer with a profile of actions
 – *E.g.*, *Alice posts a blog under an assumed name*

 Unlinkability = inability to link Alice to a specific profile
Encrypt traffic between Alice & relay
Relay

Relay

Alice

store.com

Eve, the eavesdropper

Alice sends something here

and something comes out here

May 13, 2019

CS 419 © 2019 Paul Krzyzanowski
We can use encrypted connections (TLS) to hide network traffic

What if someone eavesdrops on the relay?
Multiple relays

Alice is doing something

Encrypted

store-1.com
store-2.com
store-3.com
store-4.com
store-5.com

Someone is going to store-3.com
Correlation Attack

If an eavesdropper watches entry & exit of data

– She can correlate timing & size of data at the 1st relay with outputs of the last relays

– If Alice sends a 2 KB request to Relay₁ at 19:12:15 and Relay₃ sends a 2 KB request to store-3.com at 19:12:16 and store-3.com sends a 150 KB response to Relay₃ at 19:12:17 and Alice receives a 150 KB response at 19:12:18

... we're pretty sure Alice is talking to store-3.com
Correlation Attack

• You can make a correlation attack attack difficult
 – Pad or fragment messages to be the same size
 – Queue up multiple messages, shuffle them, and transmit them at once

• This works in theory but is a pain in practice
 – Extra latency, traffic
 – You still need a LOT of users to ensure anonymity

• Relays should be hosted by third parties to get many different groups as input
 – E.g., a relay within fbi.gov tells you all input comes from fbi.gov
Alice selects a list of relays through which her message will flow.

This path is called a circuit.

No node knows if the previous node is the originator or relay.
- Only the final node (exit node) knows it is the last node.
• Alice connects to Relay1
 – Sets up a TLS link to Relay1
 – Does a one-way authenticated key exchange with Relay1 – agree on a symmetric key, S_1
 – Alice picks a circuit ID (e.g., 123) and asks Relay1 to create the circuit
Setting up a circuit (2)

• Alice extends the relay to Relay\textsubscript{2}
 – Alice sends a message to Relay\textsubscript{1}:
 First part = "on circuit 123, send Relay\textsubscript{Extend} to Relay\textsubscript{2} – the message is encrypted with S\textsubscript{1}
 – Relay\textsubscript{1} establishes a TLS link to Relay\textsubscript{2} (if it didn't have one)
 – Second part of the message from Alice: initial handshake with Relay\textsubscript{2}, encrypted with Relay\textsubscript{2}'s public key
 – Relay\textsubscript{2} picks a random circuit for identifying this data stream to Relay\textsubscript{2}, e.g., 456
 • Circuit 123 on Relay\textsubscript{1} connects to Circuit 456 on Relay\textsubscript{2}
 – Does a one-way authenticated key exchange with Relay\textsubscript{2} – agree on a symmetric key, S\textsubscript{2}
 • All traffic flows through Relay\textsubscript{1} and is encrypted with S\textsubscript{1}
Setting up a circuit (3)

- Alice extends the relay to Relay_3
 - Same process – Alice sends a \textit{Relay Extend} message to Relay_2
 - Messages to Relay_2 are encrypted with S_2 and then with S_1
 \[E_{S_1}(E_{S_2}(M)) \]
 - Relay_1 decrypts the message to identify its circuit (123)
 - Routes message to Relay_2 on circuit 456
 - Circuit 123 is connected to circuit 456
Sending a message (5)

- Alice sends a message to store-3.com
- Each router strips off a layer of encryption
- At the end:
 - Directive to S_3 to open a TCP connection to store-3.com
 - Send messages
 - Get responses
Not a VPN

• Neither IP nor TCP packets are transmitted in the message
 – Just data streams
 – It would be too easy to identify the type of system by looking at TCP formats and responses

• Just take contents of TCP streams and relay the data

• End-to-end TLS works fine
 – TLS sits on top of TCP … it's just data going back and forth
Finding nodes

• Ideally, everyone would use some of the same nodes
 – Otherwise traffic would be distinguishable

• Multiple trusted parties supply node lists
 – Merge lists together
 • **Union**: if popularity-based, danger of someone flooding a list of nodes to capture traffic
 • **Intersection**: someone can block out nodes
 – Multiple parties vote on which nodes are running and behaving well
 • Distributed consensus

• Clients get list of nodes and their public keys
Is it anonymous?

• Not really

• You may be able to do a correlation attack
 – ISPs know who's talking to whom
 – May need to access logs from multiple ISPs
 – Can be really difficult if nodes have a lot of traffic (and it's similarly dense)

• Compromised exit node
 – Exit node decrypts the final layer and contacts the service
Some problems

• Searching is difficult
 – Search engines, such as Grams, often give bad results
 – **Hidden Wiki** (http://thehiddenwiki.org) – Directory of Tor .onion sites
 • Often full of bad links

• Users are the weakest link
 – Sites constantly changing addresses to avoid DDoS attacks
 – Lots of scammers
 – Honeypots set up by law enforcement
 – Many ISPs block access to Tor

• Sites can get found & shut down
 – Silk Road 2.0: shut down by the FBI & Europol on Nov 6 2014
 – Silk Road 3.0: went offline due to loss of funds in 2017
 – AlphaBay (largest source of contraband): shut down in July 2017
 – Hansa Market (competitor to AlphaBay): also shut down in 2017 by Dutch police
Grams
Search the darknet

E.g. cannabis

Grams Search I'm Feeling Lucky
To browse .onion Deep Web links, install Tor Browser from http://torproject.org/

Hidden Service lists and search engines

http://3g2upl4pq6kufc4m.onion/ – DuckDuckGo Search Engine
http://xmh57jrzrn6insl.onion/ – TORCH – Tor Search Engine

http://qc7ilonwpv77qibm.onion/ – Western Union Exploit
http://3dbr5t4pyghedms.onion/ – ccPal Store
http://y3fpieiezy2sin4a.onion/ – HQER – High Quality Euro Replicas
http://qkj4drtgvpm7ecl.onion/ – Counterfeit USD
http://nr6juudpp4as4gjj.onion/pptobtc.html – PayPal to BitCoins
http://nr6juudpp4as4gjj.onion/doublecoins.html – Double Your BitCoins
http://lw4ipk5choakk5ze.onion/raw/4588/ – High Quality Tutorials

Marketplace Commercial Services

http://6w6vcynl6dumn67c.onion/ – Tor Market Board – Anonymous Marketplace Forums
http://wvk32thojln4gpp4.onion/ – Project Evil
http://5mvm7cg6bgklfjtp.onion/ – Discounted electronics goods
http://lw4ipk5choakk5ze.onion/raw/evbLewgkDSVkfzv8zAo/ – Unfriendlysolution – Legit hitman service
I2P and Garlic Routing

I2P = Invisible Internet Project

- Tor uses "onion routing"
 - Each message from the source is encrypted with one layer for each relay

- Garlic routing
 - Combines multiple messages at a relay
 - All messages, each with its own delivery instructions going to one relay are bundled together
 - Makes traffic analysis more difficult

- Tor circuits are bidirectional: responses take the same path

- I2P "tunnels" are unidirectional
 - One for outbound and one for inbound: the client builds both
 - Sender gets acknowledgement of successful message delivery
Services on top of I2P

• **I2PTunnel**: TCP connectivity

• Chat via **IRC** (Internet Relay Chat)

• File sharing
 – BitTorrent
 – iMule (anonymous file sharing)
 – I2Phex: Gnutella over I2P

• **I2P-Bote**: decentralized, anonymized email
 – Messages signed by the sender's private key
 – Anonymity via I2P and variable-rate delays
 – Destinations are I2P-Bote addresses

• **I2P-Messenger, I2P-Talk**

• **Syndie**: Content publishing (blogs, forums)
Status

- **Tor**: far more users (currently) → more anonymity
 - Focused on anonymous access to services

- **I2P**: focuses on anonymous hosting of services
 - Uses a distributed hash table (DHT) for locating information on servers and routing
 - Server addressing
 - Uses cryptographic ID to identify routers and endpoint services
The end