Anonymity on the Internet

- Often considered bad
 - Only criminals need to hide

- Identification not possible in all cases
 - Real-world identification is usually too easy to subvert

- Even attribution may be faulty
 - E.g., malware on your system – part of botnet launching a DDoS attack

Some services retain information about you

- Accounts, configuration settings
- Cloud storage
 - Files, email, photos, blogs, web sites
 - Encryption so the server has no access not always possible
- Interests, browsing history, messages
 - Important for data mining & targeted advertising
 - E.g., Facebook, Google

Cookies on the web

- Local name=value data stored at the browser & sent to a server
 - Avoids having to log in to a service repeatedly
 - Keeps track of session, shopping cart, preferences
- Associated with the site (same-origin policy)
 - Facebook cookies don't get sent to google ... and vice versa
- Tracking cookies (third-party cookies)
 - Websites can embed resources from another site (e.g., bugme.com)
 - Via an ad in an iFrame or a 1x1 pixel image
 - bugme.com's cookies will be sent to bugme.com
 - HTTP message contains a Referer header, which identifies the encompassing page
 - Lots of different sites may use bugme.com's services
 - Bugme.com can now build a list of which sites the visitor has visited
- Most browsers have policies to block third-party cookies

Private Browsing

- Browsers offer a "private" browsing modes
 - Apple Private Browsing, Mozilla Private Browsing,
 - Google Chrome Incognito Mode, Microsoft InPrivate browsing
- What do these modes do?
 - Do not send stored cookies
 - Do not allow servers to set cookies
 - Do not use or save auto-fill information
 - List of downloaded content
 - At the end of a session
 - Discard cached pages
 - Discard browsing & search history

Does not protect the user from viruses, phishing, or security attacks
Is private browsing private?

- It doesn't leave too many breadcrumbs on your device
- It limits the ability of an attacker to use cookies
- But
 - Your system may be logging outbound IP addresses
 - Web servers get your IP address
 - Proxies know what you did ... so do firewalls & routers
 - Your ISP knows who you are and where you went
 - DNS servers know what addresses you're looking up
- Some store and use this data

Answer: not really

Encrypted sessions?

Great ... eavesdroppers can't see the plaintext
But they can see where it's coming from and where it's going

Anonymous communication: Goal

Communicate while preserving privacy

Why?
- Avoid consequences (social, political, legal)
 - E.g., political dissidents, whistleblowers, crime reporting
- Avoid geolocation-based services
- Hide corporate activity (who's talking to whom)
- Perform private investigations
- Hide personal info, like searching about diseases you have
 - ...

Tor & Anonymous Connectivity

Tor & The Tor Browser

- Tor = The Onion Router
- Tor Browser = preconfigured web browser that uses Tor
 - Provides anonymous browsing
- Hosted on a collection of relays around the world
 - Run by non-profits, universities, individuals
 - Currently over 6,000
- 100K to millions of users
 - Exact data unknown – it's anonymous
 - Terabytes of data routed each second

History

- Onion routing developed in the mid 1990s at the U.S. Naval Research Laboratory to protect U.S. intelligence communications
- Additional work by the Defense Advanced Research Projects Agency (DARPA)
- Patented by the U.S. Navy in 1998
 - Naval Research Laboratory released code for Tor under a free license
- The Tor Project
 - Founded in 2006 as a non-profit organization with support of the EFF
What is anonymity?

- **Unobservability**
 - Inability of an observer to leak participants to actions

- **Unlinkability**
 - Inability to associate an observer with a profile of actions
 - *E.g.*, Alice posts a blog under an assumed name

 Unlinkability = inability to link Alice to a specific profile

Relay

Alice → Relay → store.com

Encrypt traffic between Alice & relay

Relay with multiple parties

Relay

A1 → store-1.com
A2 → store-2.com
A3 → store-3.com
A4 → store-4.com
A5 → store-5.com

We can use encrypted connections (TLS) to hide network traffic

What if someone eavesdrops on the relay?

Multiple relays

A1 → Relay1 → store-1.com
A2 → Relay2 → store-2.com
A3 → Relay3 → store-3.com
A4 → Relay4 → store-4.com
A5 → Relay5 → store-5.com

Alice is doing something

You cannot see all activity inside one relay

Correlation Attack

- If an eavesdropper watches entry & exit of data
 - She can correlate timing & size of data at the 1st relay with outputs of the last relays
 - *E.g.*, Alice sends a 2 KB request to Relay, at 19:12:15
 - Relay sends a 2 KB request to store-3.com at 19:12:16
 - store-3.com sends a 150 KB response to Relay, at 19:12:17
 - Alice receives a 150 KB response at 19:12:18
 - *we're pretty sure* Alice is talking to store-3.com
Setting up a circuit (1)

- Alice connects to Relay1
 - Sets up a TLS link to Relay1
 - Does a one-way authenticated key exchange with Relay1, agrees on a symmetric key, S1
 - Alice picks a circuit ID (e.g., 123) and asks Relay1 to create the circuit

Setting up a circuit (2)

- Alice extends the relay to Relay2
 - Alice sends a message to Relay1
 - First part: on circuit 123, send Relay Extend to Relay1, the message is encrypted with S1
 - Relay2 establishes a TLS link to Relay3 (if it didn’t have one)
 - Second part of the message from Alice: initial handshake with Relay2, encrypted with Relay2’s public key
 - Relay2 picks a random circuit for identifying this data stream to Relay3, e.g., 456
 - Circuit 123 on Relay2 connects to Circuit 456 on Relay3
 - Does a one-way authenticated key exchange with Relay3, agrees on a symmetric key, S2
 - All traffic flows through Relay3, and is encrypted with S2

Setting up a circuit (3)

- Alice extends the relay to Relay3
 - Same process – Alice sends a Relay Extend message to Relay2
 - Messages to Relay3 are encrypted with S2 and then with S3, E_S2(E_S3(M))
 - Relay3 decrypts the message to identify its circuit (123)
 - Routes message to Relay4 on circuit 456
 - Circuit 123 is connected to circuit 456

Sending a message (5)

- Alice sends a message to store-3.com
 - Each router strips off a layer of encryption
 - At the end:
 - Directive to S3 to open a TCP connection to store-3.com
 - Sends messages
 - Gets responses

Correlation Attack

- You can make a correlation attack attack difficult
 - Pad or fragment messages to be the same size
 - Queue up multiple messages, shuffle them, and transmit them at once
- This works in theory but is a pain in practice
 - Extra latency, traffic
 - You still need A LOT of users to ensure anonymity
- Relays should be hosted by third parties to get many different groups as input
 - E.g., a relay within fbi.gov tells you all input comes from fbi.gov

Circuits
Not a VPN
• Neither IP nor TCP packets are transmitted in the message
 – Just data streams
 – It would be too easy to identify the type of system by looking at TCP formats and responses
• Just take contents of TCP streams and relay the data
• End-to-end TLS works fine
 – TLS sits on top of TCP … it's just data going back and forth

Finding nodes
• Ideally, everyone would use some of the same nodes
 – Otherwise traffic would be distinguishable
• Multiple trusted parties supply node lists
 – Merge lists together
 • **Union**: if popularity-based, danger of someone flooding a list of nodes to capture traffic
 • **Intersection**: someone can block out nodes
 – Multiple parties vote on which nodes are running and behaving well
 • **Distributed consensus**
• Clients get
 – List of nodes and their public keys

Is it anonymous?
• Not really
• **You can do a correlation attack**
 – ISPs know who's talking to whom
 – May need to access logs from multiple ISPs
 – Can be really difficult if nodes have a lot of traffic (and it's similarly dense)
• Compromised exit node
 – Exit node decrypts the final layer and contacts the service

I2P and Garlic Routing
I2P = Invisible Internet Project
• Tor uses “onion routing”
 – Each message from the source is encrypted with one layer for each relay
• **Garlic routing**
 – Combines multiple messages at a relay
 – All messages, each with its own delivery instructions going to one relay are bundled together
 – Makes traffic analysis more difficult
• Tor circuits are bidirectional: responses take the same path
• I2P "tunnels" are unidirectional
 – One for outbound and one for inbound: the client builds both
 – Sender gets acknowledgement of successful message delivery

Services on top of I2P
• **I2PTunnel**: TCP connectivity
• Chat via IRC (Internet Relay Chat)
• File sharing
 – BitTorrent
 – iBit (anonymous file sharing)
 – I2PHex: Gnutella over I2P
• **I2P-Bote**: decentralized, anonymized email
 – Messages signed by the sender's private key
 – Anonymity via I2P and variable-rate delays
 – Destinations are I2P-Bote addresses
• **I2P-Messenger, I2P-Talk**
• Syndie: Content publishing (blogs, forums)

• **Tor**: far more users (currently) → more anonymity
 – Focused on anonymous access to services
• **I2P**: focuses on anonymous hosting of services
 – Uses a distributed hash table (DHT) for locating information on servers and routing
 – Server addressing
 • Uses cryptographic ID to identify routers and endpoint services
The end