This covers some highlights of the past four lectures — not all the material

If any of this is really unclear to you, it's an indication that you should spend some time studying the material

Authentication

- **Factors**
 1. Something you **have** (key, card, phone, USB dongle)
 2. Something you **know** (password, PIN)
 3. Something you **are** (biometrics)

- **Multi-factor authentication**
 - Using more than one of these factors
 - E.g., Password + card

Protocols: Reusable Passwords

Password Authentication Protocol (PAP)
- Classic: \(\text{username, password}\) validation
- **Hashed** passwords
 - Storing hash(password) ensures that attackers won’t see passwords if they get hold of the password file
- **Salted** hashes
 - Adding random text (salt) to a password before hashing it guards against dictionary attacks

Protocols: One-Time Passwords

1. **Sequence-based**: \(\text{password} = f(\text{previous password})\)
 - Example: S/key authentication

2. **Time-based**: \(\text{password} = f(\text{time, secret})\)
 - Example: Time-based One-Time Passwords (TOTP)

3. **Challenge-based**: \(f(\text{challenge, secret})\)
 - Example: Challenge-Handshake Authentication Protocol (CHAP)
U2F: Universal 2nd Factor Authenticator

- Hardware authenticator (usually Bluetooth or USB)
 - Stores public/private keys for each service
- Uses challenge-based authentication
- **Registration with a service** (usually a web site) - initial access
 - Server sends a challenge (N)
 - Device generates public/private key pair for the service
 - Sends \{(device_id, public key, N)\} signed with its private key
- **Authentication**
 - Server sends a challenge (N)
 - Device sends back \{(device_id, N)\} signed with its private key
 - Server can validate using the public key associated with that device_id

Biometric Authentication

- Identify a person based on physical or behavioral characteristics
 - Not ownership of keys or knowledge of passwords
- Unlike other forms of authentication
 - Biometrics relies on statistical pattern recognition
 - Comparing sampled biometric data with stored biometric data will almost never yield an exact match
 - Software will decide whether the matches are “good enough”
 - False Accept Rate (FAR): false match
 - Non-matching pair of biometric data is accepted as a match
 - False Reject Rate (FRR): false non-match
 - Matching pair of biometric data is rejected as a match

Authentication Process

1. Sensing
 - Capture the biometric data
2. Feature extraction
 - Extract the interesting (unique) parts of the data
3. Pattern matching
 - Compare the extracted data with stored samples
4. Decision
 - Decide whether the sensed data is close enough to the stored sample

Code Signing

Challenge: distribute software and ensure that it is not modified during distribution or on the computer

Solution
- Use **digital signatures**, just like for network messages
 - **Publisher**: Hash the software \(\rightarrow\) encrypt the hash with your private key
 - X.509 certificate attached to the application
 - **DS**: Hash the software \(\rightarrow\) validate the hash using the publisher’s public key
- **Per-page signatures**: sign page-size blocks of software
 - OS can verify a page as it is loaded instead of scanning the entire file ahead of time

Biometrics

- CAPTCHA
 - Not biometrics - a technique for software to detect if it’s dealing with a human being or a bot
 - Present distorted text (or images) that is difficult for a computer to process but relatively easy for humans
- **Problem**: OCR & computer vision has improved to the point where computers can match human skill
- **NoCAPTCHA RECAPTCHA**
 - No puzzles!
 - Perform “risk analysis”
 - Check IP address of known bots
 - Check Google cookies for legitimate users
 - Track mouse movements for randomness
Network security

Data link layer

- MAC Attacks – CAM overflow
 - Sniff all data on the local area network
 - If you send spoofed random source addresses, you will overflow the Ethernet switch’s table stored in content-addressable memory (CAM)
 - The switch will then broadcast all traffic onto all ports – enables snipping traffic
- VLAN Hopping
 - Sniff all data from connected virtual local area networks
 - A computer can spoof itself to appear as an ethernet switch with a trunk connection to another switch
 - It will receive traffic for all VLANs (Virtual Local Area Networks) and can see all of it rather than just the traffic for one VLAN

Data link layer

- ARP cache poisoning
 - Redirect IP packets by changing the IP address → MAC address mapping
 - Address Resolution Protocol (ARP): computer broadcasts a query asking if anyone knows the MAC address corresponding to a given IP address
 - If a malicious host responds with its MAC address, it will receive traffic for that IP address
- DHCP server spoofing
 - Configure new devices on the LAN with your choice of DNS address, router address, etc.
 - Assigns IP address, subnet mask, router address, DNS server address
 - A malicious host can act as a DHCP server and provide bad data for routers or DNS servers to redirect traffic

Network (IP) & transport (TCP/UDP) layers

- No source address authentication – anyone can fake a source address
- UDP data – trivial to forge since there is no sequencing
- TCP data – harder: need to match sequence numbers
- TCP connection setup
 - Random starting sequence numbers make it hard to guess sequence #
 - SYN flooding attack: Denial of Service
 - Send TCP connection requests (SYN packets) with an unreachable source address
 - Receiver will allocate resources for the connection
 - Eventually will not be able to accept any more connections
 - Defense: SYN cookies: minimize SYN flooding problem
 - Do not allocate resources until the handshake is complete
 - Server computes the SYN-ACK sequence number by
 - hash(src_addr, dest_addr, src_port, dest_port, SECRET)
 - SECRET is just a random number that the server picked

Routing Protocols & DNS

- BGP (Border Gateway Protocol)
 - Used by IP networks (autonomous systems) to share routing information
 - Uses a TCP connection between routers
 - Route announcements are not authenticated
 - False route announcements can cause routers throughout the Internet to redirect data to a different place
- DNS (Domain Name System)
 - Responsible for converting domain names to IP addresses
 - Responses can be intercepted & modified, providing the wrong address for a domain name

Blockchain & Bitcoin
The blockchain

- Decentralized list of transactions (ledger)
 - Block = set of transactions (in Bitcoin, ~10-minute window)
 - Blockchain: blocks connected via hash pointers into a list of blocks
 - Entire blockchain is replicated on all participating servers
 - Merkle tree: binary tree of hash pointers within a block to make it easy to find the desired transaction
- User ID (address) = your public key
 - Only you have the private key (which is stored in your wallet)
- Guarding against forgery
 - Each transaction signed by the owner

Avoiding double spending

- New transactions are sent to all participants
- Each transaction identifies inputs (past transactions where the money comes from)
 - No two transactions cannot use the same inputs
 - This ensures there is no double spending
- Each participant checks the blockchain to make sure the transaction is valid
- Valid transactions are added to the block

Proof of Work

When a block is ready to be added to the chain...

Secure the block with a Proof of Work
 - Field in the block that is modified so that the hash(block) has specific properties (first n bits are 0).
 - This takes a huge amount of computation – trying different bit patterns
Finding the Proof of Work is called mining

Changing the Past

The Proof of Work makes it difficult for a server to change old transactions
 - You would need to recompute the Proof of Work for all blocks back to the one you need to modify
 - This means creating an alternate blockchain
 - If there are competing blockchains
 - The longest chain is considered the legitimate one
 - 51% attack
 - To alter past transactions & create a longer chain, you need to own over 50% of the computation power

Confirming transactions

When do we feel safe about a transaction?

- A transaction is confirmed after N number of additional blocks are added to the blockchain

- A confirmation value of N mean that an attacker will need to recompute N+1 Proof of Work values to modify the blockchain
 - Computationally not feasible
 - Large values of N are recommended for high-value transactions (typically N=6)
Firewalls & VPNs

Virtual Private Networks

• Key principle: Tunneling

• IPsec – popular set of VPN protocols
 – Authentication Header (AH) protocol
 – Guarantees integrity & authenticity of IP packets – does not encrypt
 – Encapsulating Security Payload (ESP)
 – Adds encryption of the entire payload (encapsulated packet)

• IPsec uses
 – Authentication: Digital certificates or pre-shared keys
 – Key exchange: Diffie-Hellman
 – Confidentiality: Symmetric cryptography
 – Integrity: HMAC (hash-based MACs)

Transport Layer Security (TLS)

Goal: provide an authenticated, encrypted, and tamper-proof connection at the transport layer between two hosts that software can use in a manner similar to TCP sockets

• Authentication
 – Use public key cryptography & X.509 certificates for authentication

• Key exchange
 – Diffie-Hellman keys generated per session (or pre-shared keys)

• Confidentiality
 – Use symmetric cryptography to encrypt data

• Integrity
 – Include an HMAC with transmitted data to ensure message integrity

• Support different key exchange, encryption, integrity, & authentication protocols
 – negotiate what to use at the start of a session

Firewalls

Firewall (screening router)
1st generation packet filter that filters packets between networks. Blocks/accepts traffic based on IP addresses, ports, protocols

Stateful inspection firewall
Like a screening router but also takes into account TCP connection state and information from previous connections (e.g., related ports for TCP)

Application proxy
Gateway between two networks for a specific application. Prevents direct connections to the application from outside the network. Responsible for validating the protocol.

IDS/IPS
Can usually do what a stateful inspection firewall does + examine application-layer data for protocol attacks or malicious content

Host-based firewall
Typically screening router with per-application awareness. Sometimes includes anti-virus software for application-layer signature checking

Host-based IPS
Typically allows real-time blocking of remote hosts performing suspicious operations (port scanning, ssh logins)

Web Security

Same-origin policy

• Basic security model for the web
 – A browser permits scripts in one page to access data in a second page only if both pages have the same origin
 – Origin = (URI scheme, hostname, port number)

• Each frame gets the origin of its URL
 – JavaScript code executes with the authority of its frame’s origin
 – If cnn.com loads JavaScript from jQuery.com, the script runs with the authority of cnn.com
 – Passive content (CSS files, images) has no authority
 – It doesn’t (and shouldn’t) contain executable code

• Cross-Origin Resource Sharing (CORS)
 – A way for the server to tell a browser to treat multiple origins as the same
Some browser attacks

Cross-Site Request Forgery (CSRF)
- Browsers send all relevant cookies to the server with each request – these often contain login information
- Some services place commands on the URL
- Attack: An attacker may get you to take some action on a site where you are already authenticated by getting you to click on a link

Cross-Site Scripting (XSS)
- Code injection attack: malicious scripts are added as part of user input and later presented back to a user.
 - Reflected XSS: attacker creates a malicious link. User clicks on it and the response goes back to the user’s browser with the malicious script in it.
 - Persistent XSS: attacker adds malicious JavaScript where it will be stored on a server and presented to other users (e.g., forum comments)

Clickjacking
- Attacker overlays an image to trick a user to clicking a button or link – the user clicks on something different than they think they’re clicking on

Android Security
- App isolation
 - Linux user IDs are used as app IDs: each app has its own Linux UID
 - Java apps run in a Dalvik virtual machine
- Mandatory code signing
 - Can be self-signed or signed by a third party – Android does not validate CAs
- App communication
 - Apps communicate with intents: messages that contain an action & data sent to some other component
 - This is the way apps request services from system services or other apps
- Permissions
 - Apps must request permission to access resources at install time
 - OS maintains a whitelist of what an app is allowed to access
- File system encryption

iOS Security
- App isolation
 - App sandbox restricts access to other app’s data & resources
- App communication
 - Inter-app communication only through iOS APIs
- Mandatory code signing
 - Must be signed using an Apple Developer certificate
- App data protection
 - Apps can use built-in hardware encryption
- File encryption
 - Each file is encrypted with a unique key

Hardware protection
- ARM TrustZone: two “worlds”
 - Non-secure world
 - Cannot access secure resources directly
 - Main OS and apps run in the non-secure (non-trusted) world
 - Secure world
 - Cryptographic functions & key storage
- Each world has its own OS & applications
 - Secure key management & key generation
 - Secure boot, digital rights management, secure payment
- Apple Secure Enclave: Apple’s customized TrustZone-like solution
 - Dedicated co-processor for the secure world
 - All cryptographic functions are handled in the secure enclave (secure world)