This covers highlights of the past four lectures—not all the material.

If any of this is really unclear to you, it’s an indication that you should spend some time studying the material.

Biometric Authentication

- Identify a person based on physical or behavioral characteristics
 - Not ownership of keys or knowledge of passwords
- Unlike other forms of authentication
 - Biometrics relies on statistical pattern recognition
 - Comparing sampled biometric data with stored biometric data will almost never yield an exact match

ROC Curve

- **False Accept Rate (FAR)**
 - Non-matching pair of biometric data is accepted as a match
- **False Reject Rate (FRR)**
 - Matching pair of biometric data is rejected as a match
- **ROC (Receiver Operator Characteristic) curve** identifies the behavior of a biometric system
 - FAR vs. FRR

Robustness and Distinctiveness

- **Robustness**
 - Repeatable, not subject to large changes over time
 - Fingerprints & iris patterns are more robust than voice
- **Distinctiveness**
 - Differences in the biometric measurement among population
 - Fingerprints: typically 40-60 distinct features
 - Iris: typically >250 distinct features
 - Hand geometry: ~1 in 100 people may have a hand with measurements close to yours.
Authentication Process

1. Sensing
 - Capture the biometric data
2. Feature extraction
 - Extract the interesting (unique) parts of the data
3. Pattern matching
 - Compare the extracted data with stored samples
4. Decision
 - Decide whether the sensed data is close enough to the stored sample

Security Problems

- Need a trusted and tamper-proof capture & authentication path
 - Sensor hardware → Feature extraction processing → Processing & Decision
- Need trusted storage for stored samples of data
- Biometric data cannot be compartmentalized
 - You cannot have different data for your Amazon & bank accounts
- Biometric data can be stolen
 - Photos (iris, fingerprints), lifting fingerprints
 - Once biometric data is compromised, it remains compromised
 - You cannot change your iris or finger

Security Problems

- Need trusted and tamper-proof capture & authentication path
- Need trusted storage for stored samples of data
- Biometric data cannot be compartmentalized
- Biometric data can be stolen
- You cannot change your iris or fingerprint

CAPTCHA

- Not biometrics – a technique for software to detect if it’s dealing with a human being or a bot
- Present distorted text that is difficult for a computer to process but relatively easy for humans
- Alternate approach
 - Recognize pictures or parts of a scene
 - Problem: OCR has improved to the point where computers can recognize sloppy text
- NoCAPTCHA RECAPTCHA
 - No puzzles!
 - Perform “risk analysis”
 - Check IP address of known bots
 - Check Google cookies for legitimate users
 - Track mouse movements for randomness

Code Signing

- Challenge: distribute software and ensure that it is not modified during distribution or on the computer
- Solution
 - Use digital signatures, just like for messages
 - Publisher: Hash the software → encrypt the hash with your private key
 - User: Hash the software → validate the hash using the publisher’s public key
 - Publisher’s public keys are distributed as X.509 digital certificates
- Sign page-size blocks of software
 - Operating system’s demand paging does not load the whole program at once, just individual pages when they are needed
 - OS can verify a page as it is loaded

Data link layer

- MAC Attacks – CAM overflow
 - An Ethernet switch builds up a switch table in content-addressable memory
 - Table identifies source ethernet MAC addresses with the switch port
 - If you send spoofed random source addresses, you will overflow the table
 - The switch will then broadcast all traffic onto all ports
- VLAN Hopping
 - A computer can spoof itself to appear as an ethernet switch with a trunk connection to another switch
 - It will receive traffic for all VLANs (Virtual Local Area Networks) and can see all of it rather than just the traffic for one VLAN

Network security
Data link layer

- **ARP cache poisoning**
 - Address Resolution Protocol (ARP): computer broadcasts a query asking if anyone knows the MAC address corresponding to a given IP address
 - Anyone can reply
 - If a malicious host responds with its MAC address, it will receive traffic for that IP address
- **DHCP server spoofing**
 - DHCP is used to configure devices on the network
 - Assigns IP address, subnet mask, router address, DNS server address
 - A malicious host can act as a DHCP server and provide bad data for routers or DNS servers to redirect traffic

Network (IP) & transport (TCP/UDP) layers

- **No source address authentication** – anyone can fake a source address
- **UDP data** – trivial to forge since there is no sequencing
- **TCP data** – harder: need to match sequence numbers
- **TCP connection setup**
 - Random starting sequence numbers make it hard to guess sequence
 - SYN flooding attack:
 - Send TCP connection requests (SYN packets) with an unreachable source address
 - Receiver will allocate resources for the connection
 - Eventually will not be able to accept any more connections
 - Defense: SYN cookies
 - Do not allocate resources until the handshake is complete
 - Server computes the SYN-ACK sequence number by
 - hash(src_addr, dest_addr, src_port, dest_port, SECRET)
 - SECRET is just a random number that the server picked

Routing Protocols & DNS

- **IP networks (autonomous systems)** share routing information using BGP (Border Gateway Protocol)
 - TCP connection
 - Route announcements are not authenticated
 - Fake route announcements can cause routers throughout the Internet to redirect data to a different place
- **DNS (Domain Name System)**
 - Responsible for converting domain names to IP addresses
 - Responses can be intercepted & modified, providing the wrong address for a domain name

Firewalls & VPNs

Virtual Private Networks

- **Key principle: Tunneling**
 - Encapsulate an entire packet as payload in another packet that is routed over a public network
 - Receiver extracts the encapsulated packet and routes it onto its network
- **IPsec** – popular set of VPN protocols
 - Authentication Header (AH) protocol
 - Guarantees integrity & authenticity of IP packets
 - Adds a MAC for the contents of the entire IP packet
 - Encapsulating Security Payload (ESP)
 - Adds encryption of the entire payload (encapsulated packet)
 - IPsec uses
 - HMAC (hash-based MACs) for integrity
 - Symmetric cryptography for confidentiality
 - Kerberos, digital certificates, or pre-shared keys for authentication

Transport Layer Security (TLS)

- **Goal**: provide an authenticated, encrypted, and tamper-proof connection between two hosts that software can use in a manner similar to TCP sockets
- **Designed with web security in mind**
 - Mutual authentication is usually not needed
 - Client needs to identify the server but the server won’t know all clients
 - Users may often log in from different systems, so certificate & key management may be troublesome
 - Rely on passwords after the secure channel is set up
SSL/TLS Principles

- Use symmetric cryptography to encrypt data
 - Keys generated uniquely at the start of each session
- Include a MAC with transmitted data to ensure message integrity
- Use public key cryptography & X.509 certificates for authentication
 - Optional – can authenticate 0, 1, or both parties
- Support different key exchange, encryption, integrity, & authentication protocols – negotiate what to use at the start of a session

Firewalls

- Firewall (screening router): 1st generation packet filter that filters packets between networks. Blocks/accepts traffic based on IP addresses, ports, protocols
- Stateful inspection firewall: Like a screening router but also takes into account TCP connection state and information from previous connections (e.g., related ports for TCP)
- Application proxy: Gateway between two networks for a specific application. Prevents direct connections to the application from outside the network. Responsible for validating the protocol.
- IDS/IPS: Can usually do what a stateful inspection firewall does + examine application-layer data for protocol attacks or malicious content
- Host-based firewall: Typically screening router with per-application awareness. Sometimes includes anti-virus software for application-layer signature checking
- Host-based IPS: Typically allows real-time blocking of remote hosts performing suspicious operations (port scanning, ssh logins)

Web Security

Same-origin Policy

- Web application security model: same-origin policy
- A browser permits scripts in one page to access data in a second page only if both pages have the same origin
- Origin = (URI scheme, hostname, port number)
 - Same origin
 - Different origin
 - http://poopybrain.com/index.html: different host

Ideas behind the same-origin policy

- Each origin has client-side resources
 - Cookies: simple way to implement state
 - Browser sends cookies associated with the origin
 - JavaScript namespace: functions & variables
 - DOM storage: key-value storage per origin
 - DOM tree: JavaScript version of the HTML structure
- Each frame gets the origin of its URL
- JavaScript code executes with the authority of its frame’s origin
 - If cnn.com loads JavaScript from jQuery.com, the script runs with the authority of cnn.com
- Passive content (CSS files, images) has no authority
 - It doesn’t (and shouldn’t) contain executable code

Cross-Origin Resource Sharing (CORS)

- A page can contain content from multiple origins
 - Images, CSS, scripts, iframes, videos
- XMLHttpRequests from different origin are not permitted
- CORS – allows servers to define allowable origins
 - Example, a server at service.example.com may respond with Access-Control-Allow-Origin: http://www.example.com
 - Stating that it will allow treating www.example.com as the same origin
Cross-Site Request Forgery (XSRF)

- A browser sends cookies for a site along with a request
- If an attacker gets a user to access a site, the user’s cookies will be sent with that request
- If the cookies contain the user’s identity or session state:
 - The attacker can create actions on behalf of the user
- This attack works if the URL and cookies contain all necessary information to perform an action
- Planting the link:
 - Forums or spam
 - http://mybank.com/?action=transfer&amount=100000&to=attacker_account

Clickjacking

- Attacker overlays an image to trick a user to clicking a button or link
- User sees this:
 - There’s an invisible frame over the image with a clickable link. User clicks on a maliciously-placed link
- Defense:
 - JavaScript in the legitimate code to check that it’s the top layer
 - window.self == window.top
 - Set X-Frame-Options to not allow frames from other domains

Input Sanitization

- As we saw in the past, using user input directly can be dangerous
- Malicious users can:
 - Modify the content of JavaScript code
 - URLs
 - CSS definitions
- Cross-site scripting (XSS)
 - User-generated text presented as part of HTML (e.g., content from user forums)
 - This text can contain malicious JavaScript, HTML frames, etc.
 - Reflected XSS:
 - URL contains malicious content that will be sent to the server and then back to the user (e.g., an invalid login message)
 - Persistent XSS:
 - Website stores user input and presents it as part of HTML to other users

Mobile Device Security

Android Security

- App isolation:
 - Apps run in a Dalvik virtual machine
 - Each app has its own Linux user ID
- App communication:
 - Apps communicate with intents: messages that contain an action & data sent to some other component
- Permissions:
 - Apps request permission to access resources at install time
 - OS maintains a whitelist of what an app is allowed to access
- File system encryption

iOS Security

- App isolation:
 - App sandbox restricts access to other app’s data & resources
- App communication:
 - Inter-app communication only through iOS APIs
- Mandatory code signing:
 - Must be signed using an Apple Developer certificate
- App data protection:
 - Apps can use built-in hardware encryption
- File encryption:
 - Each file is encrypted with a unique key
Hardware protection

• ARM TrustZone
 – Non-secure world cannot access secure resources directly
 – Main OS and apps run in the non-secure (non-trusted) world
 – If a key is stored in the secure world (trusted), even the OS cannot access it
• Processor executes in one world at any given time
• Each world has its own OS & applications
• Applications
 – Secure key management & key generation
 – Secure boot, digital rights management, secure payment
• Apple Secure Enclave: Apple's customized TrustZone
 – All cryptographic functions are handled in the secure enclave (secure world)

Content Protection and DRM

• Digital Rights Management (DRM)
 – Specify how content can be played and copied
 – Requires a trusted player (trusted software) that plays by these rules
• Digital Video Broadcasting
 – Encrypted content
 – Key (Encrypted Control Word) for the content changes every few minutes and is also broadcast
 – These ECW keys are encrypted with another key. This key is updated less frequently to each user & encrypted with the secret key in their smart card
• CableCARD
 – Secure device that stores keys and decrypts encrypted video streams if the user is authorized
 – Authorization info and keys are encrypted for the card and sent to the user

Steganography & Watermarking

• Steganography
 – Hide the contents of a message
 – Goal: transmit the hidden message to a receiver who knows what to look for
 – Examples
 – Null Cipher: Hide the message among other useless data (e.g., look at the first character of each word)
 – Chaffing & Winnowing:
 – Messages are sent in plaintext but only some messages are valid
 – Each message is signed but signatures for invalid messages are garbage
 – Only trusted receivers have the key to validate signatures
 – Images
 – Set least-significant bits
 – Hide a message in the frequency domain
• Watermarking
 – Goal: robust message that an intruder cannot remove
 – Not necessarily invisible

DVD and Blu-Ray

• Movie is encrypted with a symmetric media key
• The media key is encrypted lots of times, once for each device family
• Trusted player decrypts the media key for with its device key
• Both DVD and Blu-Ray content protection systems have been broken
 – You can get a lot of player keys and most (all) media keys

Watermarking

• Examples
 – Ultraviolet images on documents
 – Text with lines, words, or letters shifted based on bits to transmit
 – Bits added to pictures, audio, or video data (as with steganography)
The end