Fundamental Layer 2 & 3 Problems

- IP relies on store-and-forward networking
 - Network data passes through untrusted hosts
 - Routes may be altered to pass data through malicious hosts
- Packets can be sniffed and examined
- TCP session state can be examined or guessed ... and TCP sessions can be hijacked
- No source authentication on IP packets

Solution: Use private networks

Connect multiple geographically-separated private subnetworks together

But this is expensive ... and not feasible in many cases (e.g., cloud servers)

Tunneling

Tunnel = Packet encapsulation
Treat an entire IP datagram as payload on the public network

Tunnel mode vs. transport mode

- Tunnel mode
 - Communication between gateways: network-to-network
 - Or host-to-network
 - Entire datagram is encapsulated

- Transport mode
 - Communication between hosts
 - IP header is not modified
Virtual Private Networks

Take the concept of tunneling … and safeguard the encapsulated data

• Add a MAC
 – Ensure that outsiders don’t modify the data
• Encrypt it
 – Ensure that outsiders can’t read the contents

IPsec

• Internet Protocol Security
• End-to-end solution at the IP layer
• Two protocols:
 – **IP Authentication Header** Protocol (AH)
 • Authentication & integrity of payload and header
 – **Encapsulating Security Payload** (ESP)
 • AH + Confidentiality of payload

IPsec Authentication Header (AH)

Guarantees integrity & authenticity of IP packets
 – MAC for the contents of the entire IP packet
 – Over unchangeable IP datagram fields (e.g., not TTL or fragmentation fields)

Layered directly on top of IP (protocol 51)
- not UDP or TCP

IPsec Encapsulating Security Payload (ESP)

Encrypts entire payload
 – Plus authentication of payload + IP header (everything AH does)
 (may be optionally disabled – but you don’t want to)

Directly on top of IP (protocol 51) - not UDP or TCP

IPsec algorithms

• **Integrity protection & authenticity**
 – HMAC-SHA1
 – HMAC-SHA2
• **Confidentiality**
 – 3DES-CBC
 – AES-CBC
• **Authentication**
 – Kerberos, certificates, or pre-shared key authentication
• **Key generation**
 – Diffie-Hellman to exchange keying material for key generation
 – Key lifetimes determine when new keys are regenerated

Conversation Isolation: Transport Layer

SSL/TLS
We can't count on the security of the Internet

- Core IP protocols were not designed with security in mind
- Traffic can be redirected
 - For interception for modification or logging
 - For deception: adversary masquerades as the server
- What can we do … without changing the way IP works?
 - Use virtual private networks – VPNs
 - Provide an authenticated, and optionally encrypted, message stream between two networks
 - This data is sent via IP and has an authentication header (MAC) to ensure that it has not been modified … and is optionally encrypted
 - Transport mode: form of VPN that communicates between one host and a network
 - Or we can provide this type of security at the transport layer
 - Application-to-application communication

Transport Layer Security

- Goal: provide a transport layer security protocol
- After setup, applications feel like they are using TCP sockets
 - SSL: Secure Socket Layer
 - Created with HTTP in mind
 - Web sessions should be secure
 - Mutual authentication is usually not needed
 - Client needs to identify the server but the server won't know all clients
 - Rely on password authentication after the secure channel is set up
 - SSL evolved to TLS (Transport Layer Security)
 - SSL 3.0 was the last version of SSL … and is considered insecure
 - We use TLS now … but often still call it SSL

TLS Protocol

- Goal
 - Provide authentication (usually one-way), privacy, & data integrity between two applications
- Principles
 - Data encryption
 - Use symmetric cryptography to encrypt data
 - Keys generated uniquely at the start of each session
 - Data integrity
 - Include a MAC with transmitted data to ensure message integrity
 - Authentication
 - Use public key cryptography & X.509 certificates for authentication
 - Optional – can authenticate 0, 1, or both parties
 - Interoperability & evolution
 - Support many different key exchange, encryption, integrity, & authentication protocols – negotiate what to use at the start of a session

TLS Protocol & Ciphers

Two sub-protocols
1. Authenticate & establish key
2. Communicate
 - HMAC used for message authentication
- Key exchange
 - Public keys (RSA or Elliptic Curve)
 - Diffie-Hellman keys
 - Ephemeral Diffie-Hellman keys (generated for each session)
 - Pre-shared key
- Data encryption
 - AES GCM, AES CBC, ARIA (GCM/CBC), ChaCha20-Poly1305, …
- Data integrity
 - HMAC-MD5, HMAC-SHA1, HMAC-SHA256/384, …

Benefits of TLS

- Benefits
 - Protects integrity of communications
 - Protects the privacy of communications
 - Validates the authenticity of the server (if you trust the CA)
Attacks on TLS

• **Man-in-the-middle: BEAST attack in TLS 1.0**
 – Attacker was able to see Initialization Vector (IV) for CBC and deduce plaintext (because of known HTML headers & cookies)
 – Fixed by using explicit IVs for each new block

• **Man-in-the-middle: crypto renegotiation**
 – Attacker can renegotiate the handshake protocol during the session to disable encryption
 – Proposed fix: have client & server verify info about previous handshakes

• **THC-SSL-DoS attack**
 – Attacker initiates a TLS handshake & requests a renegotiation of the encryption key – repeat over & over, using up server resources

Other problems with TLS

• **Client authentication Problem**
 – Client authentication is almost never used
 – Generating keys & obtaining certificates is not an easy process for users
 – Any site can request the certificate
 – User will be unaware their anonymity is lost
 – Moving private keys around can be difficult
 – What about public computers?
 – We usually rely on other authentication mechanisms
 – Usually user name and password
 – But no danger of eavesdropping since the session is encrypted
 – May use one-time passwords or two-factor authentication if worried about eavesdroppers at physical premises

Other problems with TLS

• **Client authentication Problem**
 – Client authentication is almost never used
 – Generating keys & obtaining certificates is not an easy process for users
 – Any site can request the certificate
 – User will be unaware their anonymity is lost
 – Moving private keys around can be difficult
 – What about public computers?
 – We usually rely on other authentication mechanisms
 – Usually user name and password
 – But no danger of eavesdropping since the session is encrypted
 – May use one-time passwords or two-factor authentication if worried about eavesdroppers at physical premises

Firewalls

• Separate your local network from the Internet
 – Protect the border between trusted internal networks and the untrusted Internet

• Approaches
 – Packet filters
 – Application proxies
 – Intrusion detection / intrusion protection systems

Network Security Goals

• **Confidentiality**: sensitive data & systems not accessible
• **Integrity**: data not modified during transmission
• **Availability**: systems should remain accessible

Firewall

• **Separate your local network from the Internet**
 – Protect the border between trusted internal networks and the untrusted Internet

• **Approaches**
 – Packet filters
 – Application proxies
 – Intrusion detection / intrusion protection systems

Screening router

• **Border router** (gateway router)
 – Router between the internal network(s) and external network(s)
 – Any traffic between internal & external networks passes through the border router

 Instead of just routing the packet, decide weakhert to route it

• **Screening router = Packet filter**
 – Allow or deny packets based on
 – Incoming & outgoing interfaces
 – Source & destination IP addresses
 – Source & destination TCP/UDP ports, ICMP command
 – Protocol (e.g., TCP, UDP, ICMP, IGMP, RSVP, etc.)
Filter chaining

- An IP packet entering a router is matched against a set of rules: access control list (ACL) or chain.
- Each rule contains criteria and an action:
 - Criteria: packet screening rule
 - Actions:
 - Accept – and stop processing additional rules
 - Drop – discard the packet and stop processing additional rules
 - Reject – and send an error to the sender (ICMP Destination Unreachable)
 - Also:
 - Route – reroute packets
 - Nat – perform network address translation
 - Log – record the activity

Filter structure is vendor specific

Examples:
- **Windows**
 - **Allow, Block**
 - Options such as
 - Discard all traffic except packets allowed by filters (default deny)
 - Pass through all traffic except packets prohibited by filters (default allow)
- **OpenBSD**
 - **Pass (allow), Block**
 - **Chain types**: filter, route, nat
 - **Chain control**:
 - Return – stop traversing a chain
 - Jump – jump to another chain (goto = same but no return)

Network Ingress Filtering: incoming packets

Basic firewalling principle:
No direct inbound connections external systems (Internet) to any internal host – all traffic must flow through a firewall and be inspected

- Determine which services you want to expose to the Internet
 - e.g., HTTP & HTTPS: TCP ports 80 and 443
- Create a list of services and allow only those inbound ports and protocols to the machines hosting the services.

- **Default Deny model** - by default, “deny all”
 - Anything not specifically permitted is dropped
 - May want to log denies to identify who is attempting access

Network Ingress Filtering (inbound)

- **Disallow IP source address spoofing**
 - Restrict forged traffic (RFC 2827)
- At the ISP:
 - Filter upstream traffic - prohibit an attacker from sending traffic from forged IP addresses
 - Attacker must use a valid, reachable source address
- **Disallow incoming/outgoing traffic from private, non-routable IP addresses**
 - Helps with DDoS attacks such as SYN flooding from lots of invalid addresses

```
access-list 199 deny ip 192.168.0.0 0.0.255.255 any log
access-list 199 deny ip 224.0.0.0 0.0.0.255 any log
   ....
access-list 199 permit ip any any
```

Network Egress Filtering (outbound)

- **Usually we don’t worry about outbound traffic**
 - Communication from a higher security network (internal) to a lower security network (Internet) is usually fine
- **Why might we want to restrict it?**
 - Consider: if a web server is compromised & all outbound traffic is allowed, it can connect to an external server and download more malicious code...
 - or launch a DoS attack on the internal network
 - Also, log which servers are trying to access external addresses

Stateful Inspection

- **Retain state information about a stream of related packets**
- **Examples**
 - TCP connection tracking
 - Disallow TCP data packets unless a connection is set up
 - ICMP echo-reply
 - Allow ICMP echo-reply only if a corresponding echo request was sent.
 - **Related traffic**
 - Identify & allow traffic that is related to a connection
 - Example: related ports in FTP
Network Design: DMZ

Security Appliance (screening router)

Internal subnet

Internet

DMZ subnet

Clients from the Internet:
- Can access allowed services in the DMZ
- Cannot access internal hosts

The router:
- Blocks impersonated packets

Clients in the DMZ:
- Can access Internet services only to the extent required
- Can access internal services only to the extent required

Goal: Limit possible damage if DMZ machines are compromised

Network Design: DMZ

Security Appliance (screening router)

Internal subnet

Internet

DMZ subnet

Clients in the internal subnet:
- Can access the Internet
- Can access allowed services in the DMZ
- May access extra services in the DMZ

Network Address Translation

- Most organizations use private IP addresses
- External traffic goes through a NAT router
 - Network Address Translation
- NAT is an implicit firewall (sort of)
 - Arbitrary hosts and services on them (ports) cannot be accessed unless
 - They are specifically mapped to a specific host/port by the administrator
 - Internal services have initiated outgoing traffic
 - Return traffic from the same address/port will be accepted

Application-Layer Filtering

Firewalls don’t work well when everything is a web service

- Deep packet inspection
 - Look beyond layer 3 & 4 headers
 - Need to know something about application protocols & formats

- Examples
 - URL filtering
 - Normal source/destination host/port filtering +
 - URL pattern/keywords, rewrite/truncate rules, protocol content filters
 - Detect ActiveX and Java applets; configure specific applets as trusted
 - Remove others from the HTML code
 - Keyword detection
 - Prevent classified material from leaving the organization
 - Prevent banned content from leaving or entering an organization
IDS/IPS

- Intrusion Detection/Prevention Systems
 - Identify threats and attacks

- Types of IDS
 1. Protocol-based
 2. Signature-based
 - We know what is bad; anything else is good
 3. Anomaly-based
 - We know what is good; anything else is bad

Protocol-Based IDS

- Reject packets that do not follow a prescribed protocol
- Permit return traffic as a function of incoming traffic
- Define traffic of interest (filter), filter on traffic-specific protocol/patterns
- Examples
 - DNS inspection: prevent spoofing DNS replies: make sure they match IDs of sent DNS requests
 - SMTP inspection: restrict SMTP command set (and command count, arguments, addresses)
 - FTP inspection: restrict FTP command set (and file sizes and file names)

Signature-based IDS

- Don’t search for protocol violations but for possible data attacks
- Match patterns of known “bad” behavior
 - Viruses
 - Malformed URLs
 - Buffer overflow code

Anomaly-based IDS

- Search for statistical deviations from normal behavior
- Establish baseline behavior first
- Examples:
 - Port scanning
 - Imbalance in protocol distribution
 - Imbalance in service access

Application proxies

- Proxy servers
 - Intermediaries between clients and servers
 - Stateful inspection and protocol validation

Deperimeterization

- Boundaries & access between internal & external systems are harder to identify
 - Mobile systems
 - Cloud-based computing
 - USB flash memory
 - Web-based applications
Host-based firewalls

- Run on the user’s systems, not as dedicated firewalls
- Manage network-facing effects of malware
 - Allow only approved applications to send or receive data over the network
- Problem
 - If malware gets elevated privileges, it can reconfigure or disable the firewall
- Personal IDS
 - E.g., fail2ban on Linux
 - Scan log files to detect & ban suspicious IP addresses
 - High number of failed logins, probes, URLs that try to target exploits

Intrusion detection & prevention problems

- There’s a lot of stuff going on
 - People visit random websites with varying frequencies
 - Software accesses varying services
 - Buggy software may create bad packets
 - How do you detect what is hostile?
- Attack rates is miniscule … compared to legitimate traffic
 - Even a small % of false positives can be annoying and hide true threats
- Environments are dynamic
 - Content from CDNs or other large server farms has a broad range of IP addresses
 - Malicious actors can coexist with legitimate ones

Intrusion detection & prevention problems

- Encrypted traffic cannot be easily inspected
 - Just because you visit a web site using HTTPS doesn’t mean the site is secure … or hasn’t been compromised
- Packet inspection is limiting
 - You may need to reconstruct sessions, which is time consuming
- Threats & services change
 - Rules have to be updated

Summary

Firewall (screening router)
1st generation packet filter that filters packets between networks. Blocks/accepts traffic based on IP addresses, ports, protocols

Stateful inspection firewall
Like a screening router but also takes into account TCP connection state and information from previous connections (e.g., related ports for TCP)

Application proxy
Gateway between two networks for a specific application. Prevents direct connections to the application from outside the network. Responsible for validating the protocol.

IDS/IPS
Can usually do what a stateful inspection firewall does + examine application-layer data for protocol attacks or malicious content

Host-based firewall
Typically a screening router with per-application awareness. Sometimes includes anti-virus software for application-layer signature checking

Host-based IPS
Typically allows real-time blocking of remote hosts performing suspicious operations (port scanning, ssh logins)

DDoS: Distributed Denial of Service

- Compromise machines (create a botnet)
 - Use amplification techniques to generate a lot of traffic for targets
 - Exploit services that generate a lot of traffic to a small query
 - DNS amplification:
 - Small UDP query with forged source address results in large response
- Some targets were too huge to hurt with traffic
 - Amazon, Google, sites using CDNs such as Akamai
- Vast quantities of compromised systems reduce need for amplification
 - Create a botnet of millions of systems
Dealing with DDoS

Really difficult in general

- Bandwidth management routers
 - Either in data center or ISP
 - Limit outbound or inbound traffic on a per-IP basis

- Detect DNS attack and set null routing
 - Traffic to attacked DNS goes nowhere

- Egress filtering by ISPs
 - Attempt to find malicious hosts participating in DDoS or sending spam

- Identify incoming attackers & block traffic at firewall
 - Difficult with a truly distributed DDoS attack

The end