Computer Security
07r. Assignment 5 review

Paul Krzyzanowski
Rutgers University
Spring 2017
Why did the Storm worm/Trojan propagate even though Windows warns users that the app isn’t signed and asks them if they really want to install it?

• This is the social engineering aspect of Trojans: people felt that they were installing a useful app that they wanted (football game tracking), so they would go through the steps necessary to install it.

• Windows has a history of popping up annoying dialog boxes that people are trained to click them without reading to make them go away.
What is a polymorphic virus?

- It is a virus that re-encrypts itself with a different key each time it replicates.
- It also modifies the decryption code by substituting instructions with equivalent sequences of instructions:
 - E.g., add/remove NOP instructions, change adds to subtractions, invert comparisons and jumps.
- Goal: bypass virus checkers that search for known patterns (virus signatures).
Question 3

What is meant by an epidemic threshold of a virus?

• When the rate of virus replication exceeds the rate at which the virus is removed
 – The virus is spreading faster than it is being removed
In the example cited in the Panda security report, how did hackers convince people to enable macros in a downloaded word document?

- At the top of the document in bold capital letters there was a message that indicated that the image was blurred for security reasons.
- If the user wanted access to the information then they had to enable the macros, with an arrow pointing to the button to be pressed.
- Once enabled, it showed you the clear image while simultaneously infecting you with a form of Cryptolocker malware.
Explain what *spear phishing* is.

- Phishing is an attempt to get personal information from users.
- Spear phishing is a targeted form of phishing:
 - Messages are designed to appear to come from someone the recipient knows and trusts.
 - Subject lines & content may be specifically tailored to that user.
How did the use of Bitly links help in the email hacking of the Democratic National Committee (DNC)?

- Bit.ly made the links look harmless
- The short links hid the presence of long URLs containing the actual malicious domain and long list of parameters.
- Users rarely check the full URL associated with short links so URL-shortening services can be used to hide malicious URLs
Computer Security

07r. Cryptography (continued)

Paul Krzyzanowski
Rutgers University
Spring 2017
Block ciphers

- Block ciphers encrypt a *block* of plaintext at a time and produce ciphertext
- DES & AES are two popular block ciphers
 - DES: 64 bit blocks
 - AES: 128 bit blocks
- Block ciphers are usually iterative ciphers
 - The encryption process is an iteration through several *round* operations
Block cipher rounds

Each round consists of substitutions & permutations

Substitution = S-box
- Table lookup
- Converts a small block of input to a block of output
- Changing one bit of input should change approximately $\frac{1}{2}$ of output bits

Permutation
- Scrambles the bits in a prescribed order

Key application per round
- Subkey per round derived from the key
- Can drive behavior of s-boxes
- May be XORed with the output of each round
Feistel cipher

- DES is a type of Feistel cipher, which is a form of a block cipher
- Plaintext block is split in two
 - Round function applied to one half of the block
 - Output of the round function is XORed with other half of the block
 - Halves are swapped
- AES is not a Feistel cipher

![Diagram of Feistel cipher](image)
AES (Advanced Encryption Standard)

• Block cipher: 128-bit blocks
 – DES used 64-bit blocks

• Successor to DES as a standard encryption algorithm
 – DES: 56-bit key
 – AES: 128, 192, or 256 bit keys
AES (Advanced Encryption Standard)

• Iterative cipher, just like most other block ciphers
 – Each round is a set of substitutions & permutations

• Variable number of rounds
 – DES always used 16 rounds
 – AES:
 • 10 rounds: 128-bit key
 • 12 rounds: 192-bit key
 • 14 rounds: 256-bit key
 – A subkey (“round key”) derived from the key is computed for each round
 • DES did this too
Each AES Round

- **Step 1: Byte Substitution (s-boxes)**
 - Substitute 16 input bytes by looking each one up in a table (S-box)
 - Result is a 4x4 matrix

- **Step 2: Shift rows**
 - Each row is shifted to the left (wrapping around to the right)
 - 1st row not shifted; 2nd row shifted 1 position to the left;
 3rd row shifted 2 positions; 4th row shifted three positions

- **Step 3: Mix columns**
 - 4 bytes in each column are transformed
 - This creates a new 4x4 matrix

- **Step 4: XOR round key**
 - XOR the 128 bits of the round key with the 16 bytes of the matrix in step 3
AES

• Decryption process does the same rounds … but in reverse order
DES Disadvantages

• DES has been shown to have some weaknesses against differential and linear cryptanalysis
 – Key can be recovered using 2^{47} chosen plaintexts or 2^{43} known plaintexts
 – *Note that this is not a practical amount of data to get for a real attack*

• Short block size (8 bytes = 64 bits)

• The real weakness of DES is its 56-bit key
 – Exhaustive search requires 2^{55} iterations on average

• 3DES solves the key size problem: we can have keys up to 168 bits.
 – Differential & linear cryptanalysis is not effective here: the three layers of encryption use 48 rounds instead of 16 making it infeasible to reconstruct s-box activity.

• DES is relatively slow
 – It was designed with hardware encryption in mind
 • 3DES is 3x slower than DES
 – *Still much faster than RSA public key cryptosystems!*
AES Advantages

- Larger block size: 128 bits vs 64 bits
- Larger & varying key sizes: 128, 192, and 256 bits
 - 128 bits is complex enough to prevent brute-force searches
- No significant academic attacks beyond brute force search
 - Resistant against linear cryptanalysis thanks to bigger S-boxes
 - S-box = lookup table that adds non-linearity to a set of bits via transposition & flipping
 - DES: 6-bit inputs & 4-bit outputs
 - AES: 8-bit inputs & 8-bit outputs
- Typically 5-10x faster in software than 3DES
Attacks against AES

• Attacks have been found
 – This does *not* mean that AES is insecure!

• Because of the attacks:
 – AES-128 has computational complexity of $2^{126.1}$ (~126 bits)
 – AES-192 has computational complexity of $2^{189.7}$ (~189 bits)
 – AES-256 has computational complexity of $2^{254.9}$ (~254 bits)

• The security of AES can be increased by increasing the number of rounds in the algorithm

• However, AES-128 still has a sufficient safety margin to make exhaustive search attacks impractical
Cryptographic attacks

- **Chosen plaintext**
 - Attacker can create plaintext and see the corresponding ciphertext

- **Known plaintext**
 - Attacker has access to both plaintext & ciphertext but doesn’t get to choose the text

- **Ciphertext-only**
 - The attacker only sees ciphertext
 - Popular in movies but rarely practical in real life
Differential Cryptanalysis

Examine how changes in input affect changes in output

• Discover where a cipher exhibits non-random behavior
 – These properties can be used to extract the secret key
 – Applied to block ciphers, stream ciphers, and hash functions
 (functions that flip & move bits vs. mathematical operations)

• Chosen plaintext attack is normally used
 – Attacker must be able to choose the plaintext and see the corresponding
 cipher text
Differential Cryptanalysis

- Provide plaintext with known differences and see how those differences appear in the ciphertext
- The properties depend on the key and the s-boxes in the algorithm
- Do this with lots and lots of known plaintext-ciphertext sets
- Statistical differences, if found, may allow a key to be recovered faster than with a brute-force search
 - You can deduce that certain keys are not worth trying
Linear Cryptanalysis

Create a predictive approximation of inputs to outputs

• Instead of looking for differences, linear cryptanalysis attempts to come up with a linear formula (e.g., a bunch of xor operations) that connects certain input bits, output bits, and key bits with a probability higher than random
 – Goal is to approximate the behavior of s-boxes

• It will not recreate the working of the cipher
 – You just hope to find non-random behavior that gives you insight on what bits of the key might matter

• Works better than differential cryptanalysis for known plaintext. Differential cryptanalysis works best with chosen plaintext.

• Linear & differential cryptanalysis will rarely recover a key but may be able to reduce the number of keys that need to be searched.
The end