Computer Security
01. Introduction

Paul Krzyzanowski
Rutgers University
Spring 2019

February 17, 2019

What is security?

security
noun se·cu·ri·ty \\si-ˈkyu-rə-tē\
plural securities
the quality or state of being secure: such as
a: freedom from danger: safety
b: freedom from fear or anxiety
c: freedom from the prospect of being laid off
<job security>

What is computer security?

Keeping systems, programs, and data "safe"
The CIA Triad:
1. Confidentiality
2. Integrity
3. Availability

Confidentiality

• Keep data & resources hidden
 – Data will only be shared with authorized individuals
 – Sometimes conceal the existence of data or communication
• Traditional focus of computer security
Data confidentiality:
"The property that information is not made available or disclosed to unauthorized individuals, entities, or processes [i.e., to any unauthorized system entity]."
– RFC 4949, Internet Security Glossary

Confidentiality vs. privacy

Privacy
– Limit what information can be shared with others
– Ability to send messages anonymously
– Control others’ use of information about you
– Freedom from intrusion
Secrecy: the ability to conceal messages or exchange messages without anyone else seeing them

The right of an entity (normally a person), acting in its own behalf, to determine the degree to which it will interact with its environment, including the degree to which the entity is willing to share its personal information with others.

Secrecy: the ability to conceal messages or exchange messages without anyone else seeing them.

Doc: HIPAA, personal information, Privacy Act of 1974
RFC 4949, Internet Security Glossary

Privacy is a reason for confidentiality

Integrity

• Enabling access to data and resources
• The trustworthiness of the data or resources
• Preventing unauthorized changes to the data or resources
• Data integrity
 – Data integrity: property that data has not been modified or destroyed in an unauthorized or accidental manner
• Origin integrity
 – Authentication
• System integrity
 – The ability of a system to perform its intended function, free from deliberate or inadvertent manipulation

Often more important than confidentiality!
Availability

- Being able to use the data or resources
- Property of a system being accessible and capable of working to required performance specifications

Turning off a computer provides confidentiality & integrity but hurts availability

Denial of Service (DoS) attacks target availability

Thinking about security

Security is not
- adding encryption
 - or using a 512-bit key instead of a 64-bit key
 - or changing passwords
 - or setting up a firewall

It is a systems issue
- Hardware + firmware + OS + app software + networking + people
- Processes & procedures, policies, detection, forensics

“Security is a chain: it’s only as secure as the weakest link” – Bruce Schneier

Security is hard

- Software is complex
 - Windows 10: ~50 million lines of code
 - Google services comprise ~2 billion lines of code
 - Linux distribution: ~200 million lines of code

- Systems are complex
 - Lots of layers: microcode + firmware + OS + libraries + apps + devices
 - Lots of elements: clients, servers, networks, embedded devices
 - Interaction with cloud services
 - Third party components
 - Complex interaction models
 - All parts are not always under control of one administrator

- Human factor
 - People make mistakes

By applying a few basic rules, we do not have to worry about computer security

Hahaha

By applying a few basic rules, we do not have to worry about computer security

Some big breaches
Some big breaches

- 2006: TJX Companies
 - 94 million credit cards stolen; cards, banks, insurers lose close to $200 million
- 2008: Heartland Payment Systems
 - 134 million credit cards processed by 179,000 merchants
 - Well known SQL injection attack – Discovered 10 months after attack
- 2011: Sony’s PlayStation Network
 - 77 million PlayStation Network accounts hacked – site down for 1 month: $171 million loss
 - 12 million accounts had unencrypted credit card numbers
- 2011: RSA Security
 - Possibility that information on RSA’s SecurID authentication tokens was stolen
 - Two separate hacker groups allegedly working with a foreign government launched a series of phishing attacks
- 2013: Target Stores
 - Credit card & contact information of up to 110 million people

Infects routers from VPNFilter

Names, email addresses, and passwords of 150 million users
MyFitnessPal app breached in late February 2018
Attacks used spear phishing emails with malicious links to obtain login credentials
Energy Regulatory Commission, Hawaii, and Indiana
and abroad, as well as private companies, the United Nations, the U.S. Federal
Nine Iranian hackers indicted for attacks on more than 300 Universities in the U.S.
Uber paid the hackers $100,000 to destroy the data (with no proof that was done!)
Personal information of 57 million Uber users and 600,000 drivers
Application vulnerability
Names, addresses, birth dates, social security #s, birth dates, etc. of 143 million customers
Just a few recent security breaches

Some 2018 Attacks

- Iranian attacks on universities
 - Nine Iranian hackers indicted for attacks on more than 300 Universities in the U.S.
 - as well as private companies, the United Nations, the U.S. Federal
 - Emergency Regulatory Commission, Hawaii, and Indiana
 - Stoixi 3TB of data
 - Attacks used spear phishing emails with malicious links to obtain login credentials
- Under Armour
 - MyFitnessPal app breached in late February 2018
 - Names, email addresses, and passwords of 150 million users
- VPNFilter
 - Russian hacking campaign impacted more than 500,000 routers worldwide
 - VPNFilter malware coordinates devices to create a massive botnet
 - Infects routers from Netgear, TP-Link, Linksys, ASUS, D-Link, Huawei

Unique Identification Authority of India hacked
- Personal data of more than 1 billion people made available for purchase
- Text messages, call logs, and files from journalists, military
 officers, corporations in 21 countries stolen
 - Director of General Security
 - Six-year campaign by hackers with ties to the Lebanese General
 - Directorate of General Security
 - Security clearance
 - Personal information of 22 million current & former employees, including security clearance information, home info, every place people lived & traveled, & fingerprint data
 - Well known SQL injection attack – Discovered 10 months after attack
- 2013: Yahoo!
 - Names, addresses, dates of birth, phone #s, passwords, security questions of 5 billion accounts
- 2013: Adobe
 - Hackers stole nearly 2M encrypted credit card records & login information for ~150M users
- 2014: Yahoo!
 - Names, addresses, dates of birth, phone #s of 500M users
- 2014: eBay
 - Names, addresses, birth dates, encrypted passwords of 145 million users
 - Hackers used credentials of three employees and had complete inside access
- 2014: JP Morgan Chase
 - Contact info, social security info of 78 million households & 7 million small businesses
 - Israeli hackers gained root privileges on >90 of the bank’s servers
 - JP Morgan spends $250 million on security every year!

Just a few recent security breaches

Some big breaches

 - Personal information of 22 million current & former federal employees, including security clearance information, home info, every place people lived & traveled, & fingerprint data
 - Well known SQL injection attack – Discovered 10 months after attack
- 2013: Yahoo!
 - Names, addresses, dates of birth, phone #s, passwords, security questions of 5 billion accounts
- 2013: Adobe
 - Hackers stole nearly 2M encrypted credit card records & login information for ~150M users
- 2014: Yahoo!
 - Names, addresses, dates of birth, phone #s of 500M users
- 2014: eBay
 - Names, addresses, birth dates, encrypted passwords of 145 million users
 - Hackers used credentials of three employees and had complete inside access
- 2014: JP Morgan Chase
 - Contact info, social security info of 78 million households & 7 million small businesses
 - Israeli hackers gained root privileges on >90 of the bank’s servers
 - JP Morgan spends $250 million on security every year!
February 2018

- Russian hackers penetrated voter registration rolls of several U.S. states prior to 2016 election
 - Confirmed by U.S. Department of Homeland Security in 2018
 - 13 Russians and three companies indicted
- 17 GB of data stolen from Germany’s foreign and interior ministries
 - Russian hacking group -- undetected for a year

March 2018

- North Korean hacking group has been targeting major Turkish banks and government finance agencies
 - Same group linked to SWIFT financial network attacks
- Under Armor data breach compromised information of 150 million users of its MyFitnessPal app
- FBI and Department of Homeland Security issue joint alert to warn of Russian cyber attacks against critical U.S. infrastructure
 - Water, energy, nuclear, aviation, manufacturing
- Iran indicted of stealing intellectual property from >300 universities, government agencies, and financial services companies
- Baltimore’s 911 dispatch system taken down for 17 hours
 - Ransomware attack
- Online services for Atlanta were disrupted
 - Ransomware attack that demanded $55,000
 - Cost $2.6 million to recover

April 2018

- North Korean group responsible for SWIFT attacks targeted Central American online casino
- All government services of St Maarten were taken offline for a week after a cyber attack (third attack in a year)
- UK has been conducting offensive cyber operations against ISIS
- US & UK warn that Russia has been compromising home & business routers
- Chinese state-sponsored hacking groups targeted Japanese companies to get info on Japan’s policies toward North Korea
- North Korean hackers targeted critical infrastructure, finance, healthcare, and other industries in 17 countries
- Indian hacking group had been targeting government & research agencies in China and Pakistan since 2013

May 2018

- US announces withdrawal from the Iran nuclear agreement
 - News results in an immediate increase in Iranian hacking activity
- Turkish government hackers use surveillance software to infect Turkish dissidents & protesters
- Pakistani military used Facebook Messenger to distribute spyware to targets in the Middle East, Afghanistan, and India
- North Korean hackers had been targeting defectors through compromised Android apps hosted on Google Play market

June 2018

- Chinese government hackers compromised networks of a U.S. Navy contractor
- North Korean hackers targeted a South Korean think tank focused on national security issues
 - Used a zero-day exploit to compromise website & insert a back door for injecting code
- Chinese hackers were found to be engaged in a cyber espionage campaign
 - Collected data from satellites, telecom, and defense organizations in the U.S. and Southeast Asia
- Ukraine police claim that Russian hackers have been targeting Ukrainian banks, energy companies, and other organizations
 - Establish backdoors in preparation for a wide-scale strike against the country
- Data breach at marketing firm Exactis
 - Leaked information of 340 million people, including political preferences, browsing habits, & purchase data

July 2018

- Chinese hackers had been actively spying on political actors on both sides of the upcoming Cambodian elections
- Ukrainian intelligence officials claim to have thwarted a Russian attack on the network equipment of a chlorine plant in central Ukraine
- Singapore’s largest healthcare institution was targeted by state-sponsored hackers
 - Personal information for 1.5 million patients leaked
- Russian hackers targeted the Italian navy with malware designed to insert a backdoor into infected networks
- Microsoft reveals that Russian hackers had targeted the campaigns of three Democratic candidates running for the 2018 midterm elections
- Iranian hacking group had been targeting the industrial control systems of electric utility companies in the U.S., Europe, East Asia, and the Middle East
Information of approximately 500 million guests stolen

- Name, address, phone, email, passport, ... for 327 million guests

Chinese hackers suspected

But the credit card data was encrypted!

For some, the information also includes payment card numbers and payment card expiration dates, but the payment card numbers were encrypted using Advanced Encryption Standard encryption (AES-128). There are two components needed to decrypt the payment card numbers, and at this point, Marriott has not been able to rule out the possibility that both were taken.
Some more things to worry about

Oct 2017 – Spear phishing from govt servers

Fall 2018-now – Cryptojacking

Jan 2018 – Meltdown & Spectre

- Intel chips do not do full memory protection when doing speculative execution
- Vulnerability existed for 20 years!
- Meltdown
 - Allows processes to access kernel memory
- Spectre
 - Allows processes to steal data from the memory of other processes
- Also affects ARM & AMD CPUs

Hacking has consequences
Potential for physical harm

US warns of unusual cybersecurity flaw in heart devices

By FLOYD GIULIANI and DAVEY WARD PERREZ, Associated Press
WASHINGTON (AP) - The Food and Drug Administration warned Thursday about an unusual cybersecurity flaw for manufacturers' implantable heart devices that it said could allow hackers to remotely take control of a patient's device.

Information on the security flaw identified by researchers at Wexford Holdings in early March says was only formally made public after the manufacturer St. Jude Medical, makes a software repair available today. Meanwhile, a cybersecurity research company has found an in vitro healthcare exploit.

Nation State Attacks

What about our spies?

Government agencies try to develop – and pay for – the best attacking & defense techniques

But…

The American Military Sucks at Cybersecurity

A new report from US military watchdogs outlines hundreds of cybersecurity vulnerabilities.

Matthew Gault • January 23, 2019

The Department of Defense is terrible at cybersecurity. That’s the assessment of the Pentagon’s Inspector General (IG), who did a deep-dive into the American military’s ability to keep its cyber shit on lockdown.

The results aren’t great. “As of September 30, 2018, there were 266 open cybersecurity-related recommendations, dating as far back as 2008,” the Inspector General said in a new report.

The new report is a summary of the IG’s investigations into Pentagon cybersecurity over the previous year. It looked at 20 unclassified and four classified reports that detailed problems with cybersecurity and followed up to see if they’d been addressed. Previously, the IG had recommended the Pentagon take 159 different steps to improve security. It only took 19 of them.

March 2017 – Wikileaks publishes CIA Vault 7

- 8,761 documents stolen from the CIA
- Document spying operations & hacking tools
- iOS and Android vulnerabilities
- Bugs in Windows
- Ability to turn some smart TVs into listening devices

April 2017 – Theft from the NSA

- Shadow Brokers – the group that leaked a gigabyte of the National Security Agency’s weaponized software exploits over an eight-month period
- Most vulnerabilities were patched … but lots of systems never get updated
Sept 2017 – TAO tools theft from NSA

- Former NSA contractor stole >50 TB of highly sensitive data
- Includes 75% of hacking tools belonging to NSA’s Tailored Access Operations
- “took NSA materials home so that he could become better at his job”
- “Theft came to light during the investigation of a series of NSA-developed exploits that were mysteriously published online by a group calling itself Shadow Brokers.”

Some Nation-State Attacks (probably)

- 2005-2010: Stuxnet
 - Attack on Iran’s nuclear power program
 - Malware designed to target Siemens SCADA systems and damage 984 uranium enrichment centrifuges
 - Demonstrates capabilities of a nation state attack on infrastructure
 - Israel & the U.S. allegedly responsible
- 2016: First known successful cyber attack on a power grid
 - 30 substations were switched off and 230,000 people were without power for 1-6 hours
 - Attacks carried out from computers with Russian IP addresses
- 2018 and earlier: Russian accesses U.S. infrastructure
 - Russian hackers had direct access to an American power company’s control systems
 - Lays groundwork for future attacks
- 2017: NotPetya malware attacks on Ukraine (and other places): >$10B damages
 - Banks, ministries, newspapers, and electricity firms affected
 - Originated from an update to a Ukrainian tax accounting package called MeDoc
- U.S. & UK governments identify China’s ZTE and Huawei as national security risks

Nation-State Attacks: WannaCry ransomware

2017
- Hits 100s of thousands of computers
 - Mostly in the UK’s NHS
- Ransomware
 - Encrypted contents of data
 - Demanded bitcoin payment
- Blamed on North Korea
- Exploited leaked Shadow Brokers Windows vulnerabilities

Security Goals & Definitions

- Prevention: prevent attackers from violating security policy
 - Implement mechanisms that users cannot override
 - Example: ask for a password
- Detection: detect & report attacks
 - Important when prevention fails
 - Indicates & identifies weaknesses with prevention
 - Also: detect attacks even if prevention is successful
- Recovery: stop the attack, repair damage
 - ... Or continue to function correctly even if attack succeeds
 - Forensics: identify what happened so you can fix it
 - Example: restoration from backups

Security Goals

- Policy: what is or is not allowed
 - Can be expressed in natural language (“this is our security policy”)
 - Mathematics
 - Policy language - to provide precision together with ease of understanding
- Mechanisms: implement and enforce policies
 - E.g., password entry & authentication
- What mechanisms do we need to secure a system?
- What level of assurance is associated with them?
Security Engineering

- Security Architecture
 - How do we put a secure system together?
 - How do we identify potential weaknesses?
- Security Engineering
 - Implement mechanisms & policy into a system
- Engineering = making compromises
 - Understand tradeoffs
 - Security vs. cost, performance, acceptability, usability, security
 - Cost-benefit analysis
 - Is it cheaper to prevent an attack or recover?
 - Who pays & who gets punished?
 - Microsoft is not responsible for dealing with your loss

Protection: Know Your Enemy!

Different attackers
 - Who have different goals
 - And different skill levels

What we want to – or need to – guard against?

What are you securing your system against?

And from whom?
 - Yourself accidentally deleting important system files?
 - Your colleagues not being able to look at your files on a file server?
 - A company trying to find out about you and get personal data?
 - A phone carrier tracking your movement?
 - A grenade destroying your system?
 - Video surveillance on streets?
 - The NSA?

Risk analysis

- Should we protect something?
- How carefully?
- How much should we spend?

Laws & customs

- Are any security measures illegal?
 - Example: types of encryption
- Are any measures unlikely to be used?
 - Example: retina scans, urine tests
 - Conformance: balance security vs. effort

Definitions

- Vulnerability
 - A weakness in the implementation or operation of a system
- Attack
 - A means of exploiting a vulnerability
- Threat
 - an adversary that is capable of attacking

Vulnerabilities

- Failures in the system
- Bugs
- Big focus in security classes

What if a system had no vulnerabilities?

Would you not worry about threats?
Threats

- Lot of variations
- Different attackers have different abilities
- Are enemies sufficiently motivated to attack you?
 - Attackers can often resort to the three Bs: Burglary, Bribery, or Blackmail

Threat categories

- Disclosure: Unauthorized access to data
 - Snooping (wiretapping)
- Deception: Acceptance of false data
 - Injection of data, modification of data, denial of receipt
- Disruption: Interruption or prevention of correct operation
 - Denial of service, data deletion, or modification
- Usurpation: Unauthorized control of some part of a system
 - May lead to modification, spoofing, delay, denial of service

Types of threats

- Snooping: unauthorized interception of information
 - Form of disclosure
 - Counter with confidentiality services
- Modification or alteration: unauthorized change of information
 - Form of deception, disruption or usurpation
 - Counter with integrity services
- Masquerading or spoofing: impersonation of one entity by another
 - Form of deception and usurpation
 - Counter with integrity services
- Repudiation of origin: false denial that an entity sent or created something
 - Form of deception and usurpation
 - Counter with integrity services

The Internet Introduces Risks

“The internet was designed to be open, transparent, and interoperable. Security and identity management were secondary objectives in system design. This lower emphasis on security in the internet’s initial design not only gives attackers a built-in advantage. It can also make intrusions difficult to attribute, especially in real time. This structural property of the current architecture of cyberspace means that we cannot rely on the threat of retaliation alone to deter potential attackers. Some adversaries might gamble that they could attack us and escape detection.”

— William J. Lynn III, Deputy Defense Secretary, 2010

The Internet Makes It Easier To Attack

- Security was not a design consideration
- Intelligence is at the edges of the network — distributed among many players
- Access and routing not centrally managed
 - Routing decisions distributed
- No access control: any system can be added to the Internet
- Bad actors can hide
Asymmetric force

Information Technology has "opened up a whole new asymmetry in future warfare"

– William J. Lynn III, Deputy Defense Secretary, 2010

- Pentagon’s 15,000 networks and 7+ million computers are being probed thousands of times daily
- Traditional deterrence models of retaliation do not apply in cyberspace
- Example: Distributed Denial of Service (DDoS)
 - One company has only so many servers
 - Overload the servers and the server gets overloaded
 - Nobody can get through
 - Nothing happens to the data but service is disrupted
 - Attacks come from a network of helpers
 - Many attacks are carried out by botnets - computers owned by innocent people with malware
 - The botnet program periodically contacts a command & control server for directions

2008 Cyberattack on the U.S. Military

- Significant compromise of classified military computer networks
- Started with an infected USB flash drive inserted into a U.S. military laptop at a base in the Middle East
- Malicious code uploaded to a network run by U.S. Central Command
 - Spread onto other systems, allowing data to be transferred under foreign control via a remote command and control server
- Served as an important wake-up call for the U.S. Department of Defense
- Author unknown - suspected Russian hackers because of common code from previous attacks
- Defense against this was named Operation Buckshot Yankee

http://www.washingtonpost.com/wp-dyn/content/article/2010/08/24/AR2010082406495.html

Areas of Attack

- Malware
 - Umbrella term for malicious software
 - Includes keystroke logging, camera monitoring, content upload, ransomware
- File types
 - Unsafe in many cases as they can open an app and cause it to take action on malicious content
 - Example: execute Visual Basic programs from Microsoft Office documents
- Web sites
 - Offer free downloads: software, books, movies
 - Reputable sites can get infected
 - Drive-by downloads
- Social Media
 - Not an attack but a great source of information for hackers
 - E.g., post when you’re going on vacation or going on a conference
 - Adversary can use this info for impersonation or spear phishing

Social engineering

- Manipulating, influencing, or deceiving targets to get them to take some action that isn’t in their best interest.
 - E.g., downloaded software, plug in an infected USB device
 - Phishing & spear phishing are forms of social engineering
- Phishing
 - Email that looks reputable sent to a broad group of people
 - Often from bank or shipping company asking you to click on a link and fill out a form – or has a malicious attachment
- Spear Phishing
 - Small, focused attack via email on a particular person or organization
 - Often contains highly specific information known to the target: account number, name of friend

2008 Cyberattack on the U.S. Military

- Significant compromise of classified military computer networks
- Started with an infected USB flash drive inserted into a U.S. military laptop at a base in the Middle East
- Malicious code uploaded to a network run by U.S. Central Command
 - Spread onto other systems, allowing data to be transferred under foreign control via a remote command and control server
- Served as an important wake-up call for the U.S. Department of Defense
- Author unknown – suspected Russian hackers because of common code from previous attacks
- Defense against this was named Operation Buckshot Yankee

http://www.washingtonpost.com/wp-dyn/content/article/2010/08/24/AR2010082406495.html

Areas of Attack

- Malware
 - Umbrella term for malicious software
 - Includes keystroke logging, camera monitoring, content upload, ransomware
- File types
 - Unsafe in many cases as they can open an app and cause it to take action on malicious content
 - Example: execute Visual Basic programs from Microsoft Office documents
- Web sites
 - Offer free downloads: software, books, movies
 - Reputable sites can get infected
 - Drive-by downloads
- Social Media
 - Not an attack but a great source of information for hackers
 - E.g., post when you’re going on vacation or going on a conference
 - Adversary can use this info for impersonation or spear phishing

Social engineering

- Manipulating, influencing, or deceiving targets to get them to take some action that isn’t in their best interest.
 - E.g., downloaded software, plug in an infected USB device
 - Phishing & spear phishing are forms of social engineering
- Phishing
 - Email that looks reputable sent to a broad group of people
 - Often from bank or shipping company asking you to click on a link and fill out a form – or has a malicious attachment
- Spear Phishing
 - Small, focused attack via email on a particular person or organization
 - Often contains highly specific information known to the target: account number, name of friend
Computer vs. Real-World Risks

• Attacking in the computer world is easier & less risky
 → computer attacks are more common than real-world attacks
• Privacy rules may be the same but getting data is easier
 → E.g., collect data on recent real-estate sales automatically
• Attack from a distance
 → Cowards can attack – little danger of physical capture
• Easy to cast a wide net
 → Scripting lets you knock on millions of doors
 → Automation enables attacks on a large scale
 → Attacks with small chances of success or small returns are profitable
 → Email scams, phishing, transferring fractional cents, looking for weaknesses

Physical world risks are low (for most of us)
– Most people are not attacked
– Most people are not victims of espionage

Same threats in cyberspace as real-world threats:
– Theft, vandalism, extortion, fraud, coercion, con games
– Same motivation by criminals
 → But the mechanisms, risks, and access are different

Types of attacks

• Joy hacks
 → Beginners, hacking for fun, little knowledge or focus
• Opportunistic attacks
 → May be skilled but will attack any vulnerable target
 → They’re not out to get you specifically
• Targeted attacks
 → They’re out to get you
 → Will gather background info on you
 → But not high skill level
• Advanced Persistent Threats
 → Skilled & focused attackers
 → Undetected for an extended period
 → Most difficult to guard against
 → Skilled criminals to intelligence agencies

Who are the adversaries?

• Hackers
 → Good or evil
 → Test boundaries of the system – get to know system better than designers
 → Only a small % are smart; the rest are script kiddies
• Lone criminals
 → Individuals or small groups
 → Don’t necessarily reap huge $ but are often creative
• Malicious insiders
 → Insidious because they are indistinguishable from legitimate, trusted insiders
 → Perimeter defenses don’t work
 → Often have high levels of access
 → E.g., Edward Snowden (sysadmins can have a LOT of access)

Characteristics of attackers

• Goals
 → Damage, financial gain, get information
 → Knowing goals helps develop countermeasures
• Levels of access
 → Insiders vs. outsiders
• Risk tolerance
 → Are you willing to die? Go to jail?
• Resources
 → With money, you can buy computers & expertise – or bribe someone
 → Time is also a resource
• Expertise
• Economics
 → A rational adversary will balance time, money, risk, and likelihood of success

Threat matrix

Assess adversaries by skill vs. focus

<table>
<thead>
<tr>
<th>Skill</th>
<th>Focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>

Opportunistic hacks
Advanced Persistent Threats
Joy hacks
Targeted attacks

© 2017 Paul Krzyzanowski
Who are the adversaries?

- **Industrial spies**
 - Product designs, trade secrets, project bids, finances, employee info
 - Can hire/bribe employees to reveal trade secrets or become inside attackers
 - ... or resort to dumpster diving
 - Risk averse: reputation of company (or country) damaged if caught

- **Press (politicians)**
 - Get the scoop!
 - Social engineering, bribing, dumpster diving, track movements, eavesdrop, break in
 - Also generally risk averse for fear of losing one’s reputation & career

- **Organized crime**
 - More opportunities to make money!
 - Steal & sell cell phone IDs, credit card #'s, debit card info, get cash
 - Money laundering easier with EFT and anonymous currency like bitcoin

- **Police**
 - Risk averse but have law on their side (e.g., search warrants, seizing evidence)
 - Not above breaking law: wiretaps, destruction of evidence, disabling body cameras, illegal search & seizure

- **Terrorists (freedom fighters)**
 - Motivated by geopolitics, religion, or a set of ethics
 - Examples: Earth First, Hezbollah, ISIS, Aryan Nations, Greenpeace, and PETA
 - Usually more concerned with causing harm than getting specific information
 - Usually (not always) low budgets & low skill levels

- **National intelligence organizations**
 - Huge money & long-term goals
 - Somewhat risk averse
 - Bad public relations
 - Do not want leaks to reveal attack techniques
 - Often have a lot of influence
 - NSA was instrumental in the adoption of 56-bit keys for DES or the Dual_EC_DRBG (Dual Elliptic Curve Deterministic Random Bit Generator)
 - Lenovo computers, owned partially by the Chinese government’s Academy of Sciences has been accused of “malicious circuits” built into the computers
 - NSA planted backdoors into Cisco routers built for export that allows the NSA to intercept any communications through those routers.

- **Infowarriors – cyber warfare**
 - Huge money & short-term goals
 - Disrupt power grids, commerce, transportation
 - EMP weapons, spread selective information, misinformation, blackmail

Attacks & threats: Criminal attacks

- **Fraud**
- **Theft (financial)**
- **Scams**
 - Pay $$ and get little or nothing back: pyramid schemes, fake auctions
- ** Destruction**
 - Sometimes we want to make data accessible but keep control of its distribution: software, music, movies, photos, books
- **Intellectual property theft**
- **Identity theft**
- **Brand theft**

Attacks & threats: Privacy violations

- **Surveillance**
- **Databases**
- **Traffic analysis**
- **Large-scale surveillance**
 - E.g., ECHELON

Other attacks & threats

- **Publicity attacks**
- **Availability attacks**
 - DoS, DDoS
Threat models

- Set of assumptions about the abilities of an adversary
- A way to identify & prioritize potential threats from an attacker’s point of view
 - Think about things that could go wrong
 - Bad guys don’t follow rules: they don’t care about your policies
 - We need to understand what types of attacks are possible
- Assess
 - What’s valuable?
 - Where will you be likely to be attacked?
 - What are the most significant threats?
- Think about entities in the system, how they communicate & store data
 - Where are the trust boundaries?
 - Where and how is protection enforced?

Trusted Computing Base (TCB)

- TCB
 - All hardware & software of a computing system critical to its security
 - “The totality of protection mechanisms within it, including hardware, firmware, and software, the combination of which is responsible for enforcing a computer security policy.”
 - Orange Book
 - U.S. Department of Defense Trusted Computer System Evaluation Criteria (TCSEC)
- If the TCB is compromised, we can no longer guarantee the security of a system
- Software that is part of the TCB must protect itself against tampering
 - Operating system memory protection is an example of this: an application may be compromised but the operating system is still intact and unaffected

The human element

- Humans are
 - Bad at storing keys
 - Poor at estimating risk
 - Not accurate
 - Careless
 - Gullible
- Social engineering is a top threat

The end