Distributed Systems

20. Spanner

Paul Krzyzanowski
Rutgers University
Spring 2020
Spanner
Google’s successor to Bigtable … (sort of)
Spanner

Take Bigtable and add:
- Familiar SQL-like multi-table, row-column data model
 - One primary key per table
- Synchronous replication (Bigtable was eventually consistent)
- Transactions across arbitrary rows

Spanner
- **Globally distributed multi-version database**
- ACID (general purpose transactions)
- Schematized tables (Semi-relational)
 - Built on top of a key-value based implementation
 - SQL-like queries
- Lock-free distributed read transactions

Goal: make it easy for programmers to use
Working with eventual consistency & merging is hard ⇒ don't make developers deal with it
Data Storage

- Tables sharded across rows into *tablets* (like bigtable)
- Tablets stored in *spanservers*
- 1000s of spanservers per zone
 - Collection of servers – can be run independently

- Zonemaster
 Allocates data to spanservers
- Location proxies
 Locate spanservers with needed data
- Universemaster
 Tracks status of all zones
- Placement driver
 Transfers data between zones

Zone 1
- Zonemaster
- Location Proxy
- Spanserver

Zone 2
- Zonemaster
- Location Proxy
- Spanserver

Zone N
- Zonemaster
- Location Proxy
- Spanserver

April 21, 2020
© 2017-2020 Paul Krzyzanowski
Universe: holds one or more databases

Database: holds one or more tables

Table: rows & columns

Shards (tablets): pieces of tables Replicated synchronously via Paxos

Data in table is versioned & has a timestamp

Transactions across shards use two-phase commit

Directory: “bucket” – set of contiguous keys with a common prefix

Unit of data movement between Paxos groups
Transactions

• ACID properties
 – Elected transaction manager for distributed transactions
 – Two-phase commit protocol used outside of a group of replicas

• Transactions are serialized: strict 2-phase locking used

 1. Acquire all locks
 – *do work* –
 2. Get a commit timestamp
 3. Log the commit timestamp via Paxos consensus to majority of replicas
 4. Do the commit
 – Apply changes locally & to replicas
 5. Release locks
Even 2-Phase locking can be slow

For read-write transactions
Spanner uses *read locks* and *write locks*
Note that:
- *read locks* block behind *write locks*
- *write locks* block behind *read locks*

For read-only transactions
Snapshot reads via *multiversion concurrency*
- **Snapshot isolation:**
 provide a view of the database for transactions up to a point in time
- Read old versions of data at a chosen past time without getting a lock
 - Great for long-running reads (e.g., searches)
- Because you are reading before a specific point in time
 - Results are consistent

We need *commit timestamps* that will enable meaningful snapshots
Getting good commit timestamps

• Vector clocks work
 – Pass along current server’s notion of time with each message
 – Receiver updates its concept of time (if necessary)

• But not feasible in large systems
 – Pain in HTML (have to embed vector timestamp in HTTP transaction)
 – Doesn’t work if you introduce things like phone call logs

• Spanner: use physical timestamps
 – If T_1 commits before T_2, T_1 must get a smaller timestamp
 – Commit order matches global wall-time order
TrueTime

Remember: we can’t know global time across servers!

- **Global wall-clock time** = time + interval of uncertainty
 - TT.now().earliest = time guaranteed to be <= current time
 - TT.now().latest = time guaranteed to be >= current time

- Each data center has a GPS receiver & atomic clock
 - Atomic clock synchronized with GPS receivers
 - Validates GPS receivers
- Spanservers periodically synchronize with time servers
 - Know uncertainty based on interval
 - Synchronize ~ every 30 seconds: clock uncertainty < 10 ms
Commit Wait

We don’t know the exact time
… but we can wait out the uncertainty

1. Acquire all locks – do work –
2. Get a commit timestamp: \(t = \text{TT.now().latest} \)
3. **Commit wait**: wait until \(\text{TT.now().earliest} > t \)
4. Commit
5. Release locks

average worst-case wait is \(~10 \text{ ms}\)
Integrate replication with concurrency control

1. Acquire all locks
 – *do work* –
2. Get a commit timestamp: $t = \text{TT.now().latest}$
3. (a) Start consensus for replication
 (b) Commit wait (in parallel)
4. Commit
5. Release locks

Make the replicas & wait for all to finish
Deadlock

Spanner uses wound-wait to deal with deadlock
- Kill the resource owner if needed
- Old process wants resource held by a younger process
 - Old process kills the younger process
- Young process wants resource held by older process
 - Young process waits

Only permit younger processes to wait on resources held by older processes.
Spanner Summary

- Semi-relational database of tables
 - Supports externally consistent distributed transactions
 - No need for users to try deal with eventual consistency

- Multi-version database

- Synchronous replication

- Scales to millions of machines in hundreds of data centers

- SQL-based query language

- Used in F1, the system behind Google’s Adwords platform

- May be used in Gmail & Google search and others…
Are we breaking the rules?

• **Global ordering of transactions**
 – *Systems cannot have globally synchronized clocks*
 – But we can synchronize closely enough that we can wait until we are sure a specific time has passed

• **CAP theorem**
 – *We cannot offer Consistency + Availability + Partition tolerance*
 – Spanner is a CP system
 – If there is a partition, Spanner chooses C over A
 – In practice, partitions are rare - ~8% of all failures of Spanner
 • Spanner uses Google’s private global network, not the Internet
 • Each data center has at least three independent fiber connections
 – In practice, users can feel they have a CA system
Spanner Conclusion

• ACID semantics not sacrificed
 – Life gets easy for programmers
 – Programmers don’t need to deal with eventual consistency

• Wide-area distributed transactions built-in
 – Bigtable did not support distributed transactions
 – Programmers had to write their own
 – Easier if programmers don’t have to get 2PC right

• Clock uncertainty is known to programmers
 – You can wait it out
The end