
CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 2: Part 4 
Web Services

© 2021 Paul Krzyzanowski. No part of this 
content, may be reproduced or reposted in 
whole or in part in any manner without the 
permission of the copyright owner.



February 8, 2021 © 2021 Paul Krzyzanowski 2

Overview of RPC Systems & Web Services

Remote Procedure Calls

Remote Objects

Web Services



ONC (Sun) RPC

3February 8, 2021 © 2021 Paul Krzyzanowski



ONC (Sun) RPC

• RPC for Unix System V, Linux, BSD, macOS
– ONC = Open Network Computing
– Created by Sun 
– RFC 1831 (1995), RFC 5531 (2009)
– Remains in use mostly because of NFS (Network File System)

• Interfaces defined in an Interface Definition Language (IDL)

• IDL compiler is rpcgen

4February 8, 2021 © 2021 Paul Krzyzanowski



Sample IDL file
name.x

program GETNAME {
version GET_VERS {

long GET_ID(string<50>) = 1;
string GET_ADDR(long) = 2;

} = 1;   /* version */
version GET_VERS2 {

long GET_ID(string<50>) = 1;
string GET_ADDR(string<128>) = 2;

} = 2;   /* version */
} = 0x31223456;

Interface definition: version 2

5February 8, 2021 © 2021 Paul Krzyzanowski

Why is versioning important?



rpcgen

rpcgen name.x

produces:
– name.h header
– name_svc.c server skeleton (stub)
– name_clnt.c client stub (proxy)
– [ name_xdr.c ] optional XDR conversion routines

• Function names derived from IDL function names and version numbers

• Client gets pointer to result
– Allows it to identify failed RPC (null return)
– Reminder: C doesn’t have exceptions!

6February 8, 2021 © 2021 Paul Krzyzanowski



What goes on in the system: server

Start server
– Server skeleton creates a socket and binds any available local port to it
– Calls a function in the RPC library:
• svc_register to register program #, port #, protocol (TCP/UDP)
• Contacts the port mapper,  rpcbind:
– Name server
– Keeps track of {program #, version #, protocol} ® port # bindings

– Server then listens and waits to accept connections

7February 8, 2021 © 2021 Paul Krzyzanowski

rpcbind
(RPC name server)

Server
process

svc_register

Port X

Port 111



What goes on in the system: client

Client calls clnt_create with:
– Name of server
– Program #
– Version #
– Protocol (TCP or UDP)

clnt_create contacts port mapper on that server to get the port for that interface
– early binding – done once, not per procedure call

Communications
– Marshaling to XDR format

(eXternal Data Representation)
• Binary format using

implicit typing

rpcbind
(RPC name server)

Server
process

svc_register

Port X

Port 111

Client
process

clnt_create
Port X

8February 8, 2021 © 2021 Paul Krzyzanowski



ONC RPC Advantages

• Don’t worry about getting a unique transport address (port)
– But with you need a unique program number per server
– Greater portability

• Transport independent
– Protocol can be selected at run-time

• Application does not have to deal with maintaining message boundaries, 
fragmentation, reassembly

• Applications need to know only one transport address
– Port mapper (rpcbind process)

• Function call model can be used instead of send/receive

• Versioning support between client & server
February 8, 2021 © 2021 Paul Krzyzanowski 9



DCE RPC

10February 8, 2021 © 2021 Paul Krzyzanowski

http://www.opengroup.org/dce/



DCE RPC

• Similar to ONC RPC

• Interfaces written in an Interface Definition Notation (IDN)
– Definitions look like function prototypes

• Run-time libraries
– One for TCP/IP and one for UDP/IP

• Authenticated RPC support with DCE security services

• Integration with DCE directory services to locate servers

11February 8, 2021 © 2021 Paul Krzyzanowski



Unique IDs

ONC RPC required a programmer to pick a “unique” 32-bit number

DCE: get unique ID with the uuidgen command
– Generates prototype IDN file with a 128-bit Unique Universal ID (UUID)
– 10-byte timestamp with version number
– 6-byte node identifier (ethernet address on ethernet systems)

12February 8, 2021 © 2021 Paul Krzyzanowski



IDN compiler

Similar to rpcgen:

Generates header, client stub, and server skeleton

13February 8, 2021 © 2021 Paul Krzyzanowski



Service lookup

Sun RPC requires client to know name of server

DCE allows several machines to be organized into an administrative entity
cell (collection of machines, files, users)

Cell directory server  
Each machine communicates with it for cell services information

14February 8, 2021 © 2021 Paul Krzyzanowski



DCE service lookup

client cell
directory service

Request service
lookup from cell
directory server

Return server machine 
name

service?

server

15February 8, 2021 © 2021 Paul Krzyzanowski



DCE service lookup

client cell
directory service

Connect to endpoint 
mapper service and get 
port binding from this local 
name server

local
dir service

SERVER

service?

port

dced

16February 8, 2021 © 2021 Paul Krzyzanowski



DCE service lookup

client cell
directory service

Connect to service and 
request remote procedure 
execution

local
dir service

SERVER

RPC
service

dced

17February 8, 2021 © 2021 Paul Krzyzanowski



Marshalling
Standard formats for data
– NDR: Network Data Representation

Goal
– Multi-canonical approach to data conversion
• Fixed set of alternate representations
• Byte order, character sets, and floating-point representation can assume one of 

several forms
• Sender can (hopefully) use native format
• Receiver may have to convert

18February 8, 2021 © 2021 Paul Krzyzanowski



What’s Good
• DCE RPC improved Sun RPC
– Universally Unique ID (UUID)
– Multi-canonical marshalling format
– Cell of machines with a  cell directory server
• No need to know which machine provides a service

19February 8, 2021 © 2021 Paul Krzyzanowski



February 8, 2021 © 2021 Paul Krzyzanowski 20

The next generation of RPCs
Distributed objects:
support for object-oriented languages

DOA: Distributed Object Architecture



Microsoft COM+ (DCOM)

21February 8, 2021 © 2021 Paul Krzyzanowski



Microsoft DCOM/COM+

COM+: introduced with Windows 2000 
– Unified COM and DCOM plus support for transactions, resource 

pooling, publish-subscribe communication

Extends Component Object Model (COM) to allow objects to 
communicate between machines

DDE
Dynamic Data 

Exchange

1987

OLE
Object Linking & 

Embedding

1990

COM
Component Object 

Model

1992

DCOM
Distributed COM

1996

COM+
DCOM++

2000
.NET

Framework

2002

WCF
Windows Communication Foundation

2007-…

22February 8, 2021 © 2021 Paul Krzyzanowski



Activation on server
Service Control Manager (SCM)
– Started at system boot. Functions as RPC server
– Maintains database of installed services
– Starts services on system startup or on demand
– Requests creation of object on server

Surrogate process runs components: dllhost.exe
– Process that loads DLL-based COM objects 

One surrogate can handle multiple clients simultaneously

23February 8, 2021 © 2021 Paul Krzyzanowski



Beneath COM+

Data transfer and function invocation via Object RPC (ORPC)

• Small extension of the DCE RPC protocol
Standard DCE RPC messages plus:
– Interface pointer identifier (IPID)
• Identifies interface and object where the call will be processed
• Referrals: can pass remote object references

– Versioning & extensibility information

24February 8, 2021 © 2021 Paul Krzyzanowski



Marshalling
• Marshalling mechanism: NDR

same Network Data Representation used by DCE RPC
– One new data type added: represents a marshaled interface
• Allows one to pass interfaces to objects

• Remember: NDR is multi-canonical
– Efficient when both systems have the same architecture

25February 8, 2021 © 2021 Paul Krzyzanowski



MIDL
MIDL = Microsoft Interface Definition Language

MIDL files are compiled with an IDL compiler

DCE IDN + object definitions

Generates C++ code for marshalling, unmarshalling, & stubs

– Client side is called the proxy
– Server side is called the stub

Both are COM objects that are loaded
by the COM libraries as needed

26February 8, 2021 © 2021 Paul Krzyzanowski



COM+ Distributed Garbage Collection
Object lifetime controlled by remote reference counting
– RemAddRef, RemRelease calls
– Object elided when reference count = 0

27February 8, 2021 © 2021 Paul Krzyzanowski



COM+ Distributed Garbage Collection
Abnormal client termination
– Insufficient RemRelease messages sent to server
– Object will not be deleted

In addition to reference counting:
Client Pinging
– Server has pingPeriod, numPingsToTimeOut
– Relies on client to ping
• background process sends ping set – IDs of all remote objects on server

– If ping period expires with no pings received,
all references are cleared

28February 8, 2021 © 2021 Paul Krzyzanowski



Microsoft DCOM/COM+ Contributions

• Fits into Microsoft COM model
• Support for references to instantiated objects
• Generic server hosts dynamically loaded objects
– Requires unloading objects (dealing with dead clients)
– Reference counting and pinging

• But… COM+ was a Microsoft-only solution
– And it did not work well across firewalls because of dynamic ports

February 8, 2021 © 2021 Paul Krzyzanowski 29



Java RMI

30February 8, 2021 © 2021 Paul Krzyzanowski



Java RMI
• Java language had no mechanism for invoking remote methods

• 1995: Sun added extension
– Remote Method Invocation (RMI)
– Allow programmer to create distributed applications where methods of 

remote objects can be invoked from other JVMs

31February 8, 2021 © 2021 Paul Krzyzanowski



RMI components

Client
– Invokes method on remote object

Server
– Process that owns the remote object

Object registry
– Name server that relates objects with names

32February 8, 2021 © 2021 Paul Krzyzanowski



Interoperability
RMI is built for Java only!
– No goal of OS interoperability
– No language interoperability
– No architecture interoperability

No need for external data representation
– All sides run a JVM

Benefit: simple and clean design

33February 8, 2021 © 2021 Paul Krzyzanowski



RMI similarities
Similar to local objects
– References to remote objects can be passed as parameters

(not as pointers, of course)
• You can execute methods on a remote object

– Objects can be passed as parameters to remote methods

– Object can be cast to any of the set of interfaces supported by the 
implementation
• Operations can be invoked on these objects

34February 8, 2021 © 2021 Paul Krzyzanowski



RMI differences
• Objects (parameters or return data) passed by value
– Changes will visible only locally

• Remote objects are passed by reference
– Not by copying remote implementation

– The “reference” is not a pointer. It’s a data structure:
{ IP address, port, time, object #, interface of remote object }

• RMI generates extra exceptions

35February 8, 2021 © 2021 Paul Krzyzanowski



Classes to support RMI
• remote class:
– One whose instances can be used remotely
– Within its address space: regular object
– Other address spaces:
• Remote methods can be referenced via an object handle

• serializable class:
– Object that can be marshaled
– Support serialization of parameters or return values
– If a parameter is a remote object, only the object handle is copied

36February 8, 2021 © 2021 Paul Krzyzanowski



Classes to support RMI
• remote class:
– One whose instances can be used remotely
– Within its address space: regular object
– Other address spaces:
• Remote methods can be referenced via an object handle

• serializable class:
– Object that can be marshaled
– If object is passed as parameter or return value of a remote method 

invocation, the value will be copied from one address space to another
• If remote object is passed, only the object handle is copied between address spaces

37

needed for remote objects

needed for parameters

February 8, 2021 © 2021 Paul Krzyzanowski



Stub & Skeleton Generation
• Automatic stub generation since Java 1.5
– Need stubs and skeletons for the remote interfaces
– Automatically built from java files
– Pre 1.5 (still supported) generated by separate compiler: rmic

• Auto-generated code:
– Skeleton
• Server-side code that calls the actual remote object implementation

– Stub
• Client-side proxy for the remote object
• Communicates method invocations on remote objects to the server

38February 8, 2021 © 2021 Paul Krzyzanowski



Naming service
We need to look an object up by name
Get back a remote object reference to perform remote object invocations

Object registry does this: rmiregistry running on the server

39February 8, 2021 © 2021 Paul Krzyzanowski



Server
Register object(s) with Object Registry

Stuff obj = new Stuff();
Naming.bind("MyStuff", obj);

40February 8, 2021 © 2021 Paul Krzyzanowski



Client
Client contacts rmiregistry to look up the name

rmiregistry service returns a remote object reference.

lookup method gives reference to local stub.

The stub now knows where to send requests
Invoke remote method(s):

test.func(1, 2, "hi");

MyInterface test = (MyInterface)
Naming.lookup("rmi://www.pk.org/MyStuff");

41© 2021 Paul KrzyzanowskiFebruary 8, 2021



Java RMI infrastructure

bindlookup

remote
reference 

serialized arguments

marshal stream

registry

42

Client

Client Stub

“remote” call

Remote Reference Layer Remote Reference Layer

Transport Layer Transport Layer

Skeleton

Remote 
object

Client Server
February 8, 2021 © 2021 Paul Krzyzanowski



RMI Distributed Garbage Collection

• Lease-based garbage collection
– Two operations: dirty and clean

• Local JVM sends a dirty call to the server JVM when the object is in use
– The dirty call is refreshed based on the lease time given by the server

• Local JVM sends a clean call when there are no more local references to the 
object

• Unlike DCOM:
no incrementing/decrementing of references

43February 8, 2021 © 2021 Paul Krzyzanowski



February 8, 2021 © 2021 Paul Krzyzanowski 44

Web Services

From RPC to Web Services



From Web Browsing to Web Services
• Web browser:
– Dominant model for user interaction on the Internet

• Not good for programmatic access to data or manipulating data
– UI is a major component of the content
– Site scraping is a pain!

• We wanted
– Remotely hosted services – that programs can use
– Machine-to-machine communication

45February 8, 2021 © 2021 Paul Krzyzanowski



Web Services
• We wanted
– Remotely hosted services – that programs can use
– Machine-to-machine communication

• Problems
– Web pages are presentation-focused
– Traditional RPC solutions usually used a range of ports
• And we need more than just RPC sometimes

– Many RPC systems didn’t work well across languages
– Firewalls restrict ports & may inspect the protocol
– No support for load balancing

February 8, 2021 © 2021 Paul Krzyzanowski 46



RPC Had Problems
Distributed objects mostly ended up in intranets

of homogenous systems and low latency networks
• Interoperability – different languages, OSes, hardware
• Transparency – not really there
– Memory access, partial failure

• Firewalls – dynamic ports
• State – load balancing, resources
• No group communication – no replication
• No asynchronous messaging
– Large streaming responses not possible
– Notifications of delays not possibly
– No subscribe-publish models

© 2021 Paul Krzyzanowski



Web Services
Set of protocols by which services can be published, discovered, and 
used in a technology neutral form
– Language & architecture independent

• Applications will typically invoke multiple remote services
– Service Oriented Architecture (SOA)

48February 8, 2021 © 2021 Paul Krzyzanowski



Service Oriented Architecture (SOA)
SOA = Programming model

• App is integration of network-accessible services (components)
• Each service has a well-defined interface
• Components are unassociated & loosely coupled

49

Neither service depends on the 
other: all are mutually 

independent

Neither service needs to know 
about the internal structure of the 

others

February 8, 2021 © 2021 Paul Krzyzanowski



Benefits of SOA
• Autonomous modules
– Each module does one thing well
– Supports reuse of modules across applications

• Loose coupling
– Requires minimal knowledge – don’t need to know implementation
– Migration: Services can be located and relocated on any servers
– Scalability: new services can be added/removed on demand 

… and on different servers – or load balanced
– Updates: Individual services can be replaced without interruption

50February 8, 2021 © 2021 Paul Krzyzanowski



General Principles of Web Services
• Coarse-grained
– Usually few operations & large messages

• Platform neutral
– Messages don’t rely on the underlying language, OS, or 

hardware
– Standardized protocols & data formats
– Payloads are text (XML or JSON)

• Message-oriented
– Communicate by exchanging messages

• HTTP often used for transport
– Use existing infrastructure: web servers, authentication, 

encryption, firewalls, load-balancers
51February 8, 2021 © 2021 Paul Krzyzanowski



Web Services vs. Distributed Objects
Web Services
• Document Oriented
– Exchange documents

• Document design is the key
– Interfaces are just a way to pass 

documents

• Stateless computing
– State is contained within the documents 

that are exchanged (e.g., customer ID)

Distributed Objects
• Object Oriented
– Instantiate remote objects
– Request operations on a remote object
– Receive results
– …
– Eventually release the object

• Interface design is the key
– Data structures just package data

• Stateful computing
– Remote object maintains state

© 2021 Paul Krzyzanowski



XML RPC

53February 8, 2021 © 2021 Paul Krzyzanowski



Origins
• Born: early 1998
• Data marshaled into XML messages
– All request and responses are human-readable XML

• Explicit typing
• Transport over HTTP protocol
– Solves firewall issues

• No IDL compiler support for most languages
– Lots of support libraries for other languages
– Great support in some languages – those that support introspection (Python, 

Perl)

• Example: WordPress uses XML-RPC
54February 8, 2021 © 2021 Paul Krzyzanowski



XML-RPC example

<methodCall>
<methodName>

sample.sumAndDifference
</methodName>
<params>

<param><value><int> 5 </int></value></param>
<param><value><int> 3 </int></value></param>

</params>
</methodCall>

55February 8, 2021 © 2021 Paul Krzyzanowski



XML-RPC data types

• int
• string
• boolean
• double
• dateTime.iso8601
• base64
• array
• struct

56February 8, 2021 © 2021 Paul Krzyzanowski



Assessment

• Simple (spec about 7 pages)

• Humble goals

• Good language support
– Little/no function call transparency for some languages

• No garbage collection, remote object references, etc.
– Focus is on data messaging over HTTP transport

• Little industry support (Apple, Microsoft, Oracle, …)
– Mostly grassroots and open source

57February 8, 2021 © 2021 Paul Krzyzanowski



SOAP 

58February 8, 2021 © 2021 Paul Krzyzanowski



SOAP origins
(Simple) (Object) Access Protocol

• Since 1998 (latest: v1.2 April 2007)

• Started with strong Microsoft & IBM support

• Continues where XML-RPC left off:
– XML-RPC is a 1998 simplified subset of SOAP
– user defined data types
– ability to specify the recipient
– message specific processing control
– and more …

© 2021 Paul Krzyzanowski



SOAP
• Stateless messaging model
• Basic facility is used to build other interaction models
– Request-response (RPC)
– Request-multiple response
– Asynchronous notification

• Objects marshaled and unmarshaled to SOAP-format XML
– Usually sent over HTTP

• Like XML-RPC, SOAP is a messaging format
– No garbage collection or object references
– Does not define transport
– Does not define stub generation

© 2021 Paul Krzyzanowski



SOAP Web Services and WSDL
• Web Services Description Language
– Analogous to an IDL

• A WSDL document describes a set of services
– Name, operations, parameters, where to send requests
– Goal is that organizations will exchange WSDL documents
• If you get WSDL document, you can feed it to a program that will generate software 

to send and receive SOAP messages

61February 8, 2021 © 2021 Paul Krzyzanowski



WSDL Structure
<definitions>

<types>
data type used by web service: defined via XML Schema syntax 

</types>
<message>

describes data elements of operations: parameters
</message>
<portType>

describes service: operations and messages involved
</portType>
<binding>

defines message format & protocol details for each port
</binding>

</definitions>

© 2021 Paul Krzyzanowski



Java Web Services

63February 8, 2021 © 2021 Paul Krzyzanowski



What do we do with WSDL?

It’s an IDL – not meant for human consumption

Interface 
definition

WSDL 
documente.g., wsdl.exe,

Java2WSDL

WSDL 
document Code

e.g., Axis2 WSDL2Java
(apache Eclipse plug-in)

© 2021 Paul Krzyzanowski



JAX-WS: Java API for XML Web Services

• Lots of them! We’ll look at one

• JAX-WS (evolved from earlier JAX-RPC)
– Java API for XML-based Web-Service messaging & RPCs
– Invoke a Java-based web service using Java RMI
– Interoperability is a goal
• Use SOAP & WSDL
• Java not required on the other side (client or server)

• Service
– Defined to clients via a WSDL document

65February 8, 2021 © 2021 Paul Krzyzanowski



JAX-WS: Creating an RPC Endpoint
• Server
– Define an interface (Java interface)
– Implement the service
– Create a publisher
• Creates an instance of the service and publishes it with a name

• Client
– Create a proxy (client-side stub)
• wsimport command takes a WSDL document and creates a stub

– Write a client that creates an instance of the service and invokes methods on 
it (calling the stub)

© 2021 Paul Krzyzanowski



1. Java client calls a method on a stub

2. The stub creates marshals the request into a 
SOAP message for the web service

3. The request is sent to the server. 

4. Server gets the call and directs it to the 
framework

5. Framework calls the implementation

6. The implementation returns results to the 
framework

7. The framework marshals the results into a SOAP 
message

8. The sends the results back to the client stub

9. The client stub returns the information to the 
caller

© 2021 Paul Krzyzanowski

JAX-RPC Execution Steps

Client

Stub

Protocol
(SOAP/HTTP)

JAX-WS
Servlets

Servlet Framework

Protocol
(SOAP/HTTP)

SOAP/HTTP/TCP/IP

service implementation



The future of SOAP?
• Still used but…
– Required a framework – you won't create & parse messages yourself
– Language support not always great
– Hard to understand & hard to use in many cases
– Allegedly complex because “we want our tools to read it, not people” 

– unnamed Microsoft employee
– Heavyweight: XML + verbose messaging strutcture

• Dropped by Google APIs in 2006
• Still used in many places, including Microsoft APIs
• But we wanted something lighter and easier

© 2021 Paul Krzyzanowski



February 8, 2021 © 2021 Paul Krzyzanowski 69

REST



REST
REpresentational State Transfer
• Stay with the principles of the web
– Four HTTP commands let you operate on data (a resource):
• PUT (create)
• GET (read)
• POST (update)
• DELETE (delete)

– And a fifth one:
• OPTIONS (query) - determine options associated with a resource
– Rarely used … but it’s there 

• The URL identifies the resource

• Messages contain representation of data (contents)

CRUD: Create, Read, Update, Delete

© 2021 Paul Krzyzanowski



Resource-oriented services
Blog example

• Get a user's blogroll – a list of blogs subscribed by a user
HTTP GET //myblogs.org/listsubs?user=paul

• To get info about a specific blog (id = 12345):
HTTP GET http://myblogs.org/bloginfo?id=12345

© 2021 Paul Krzyzanowski



Resource-oriented services
• Get parts info
HTTP GET //www.parts-depot.com/parts

• Returns a document containing a list of parts

<?xml version="1.0"?>
<p:Parts xmlns:p="http://www.parts-depot.com" 

xmlns:xlink="http://www.w3.org/1999/xlink">
<Part id="00345" xlink:href="http://www.parts-depot.com/parts/00345"/>
<Part id="00346" xlink:href="http://www.parts-depot.com/parts/00346"/>
<Part id="00347" xlink:href="http://www.parts-depot.com/parts/00347"/>
<Part id="00348" xlink:href="http://www.parts-depot.com/parts/00348"/>

</p:Parts>

72February 8, 2021 © 2021 Paul Krzyzanowski



Resource-oriented services
• Get detailed parts info:
HTTP GET //www.parts-depot.com/parts/00345

• Returns a document with information about a specific part

?xml version="1.0"?>
<p:Part xmlns:p="http://www.parts-depot.com" 
xmlns:xlink="http://www.w3.org/1999/xlink">

<Part-ID>00345</Part-ID>
<Name>Widget-A</Name>
<Description>This part is used within the frap assembly</Description>
<Specification 

xlink:href="http://www.parts-depot.com/parts/00345/specification"/>
<UnitCost currency="USD">0.10</UnitCost>
<Quantity>10</Quantity>

</p:Part>

© 2021 Paul Krzyzanowski



REST vs. RPC Interface Paradigms
Example from wikipedia:
RPC

getUser(), addUser(), removeUser(), updateUser(),
getLocation(), AddLocation(), removeLocation()

exampleObject = new ExampleApp(“example.com:1234”);
exampleObject.getUser();

REST
http://example.com/users
http://example.com/users/{user}
http://example.com/locations
userResource =
new Resource(“http://example.com/users/001”);
userResource.get();

74February 8, 2021 © 2021 Paul Krzyzanowski



Examples of REST services
• Various Amazon & Microsoft APIs
• Facebook Graph API
• Yahoo! Search APIs
• Flickr
• Twitter
• Open Zing Services – Sirius radio

svc://Radio/ChannelList
svc://Radio/ChannelInfo?sid=001-siriushits1&ts=2007091103205

• Tesla Cars
POST https://owner-api.teslamotors.com/api/1/vehicles/vehicle_id/command/flash_lights

75February 8, 2021 © 2021 Paul Krzyzanowski



February 8, 2021 © 2021 Paul Krzyzanowski 76

AJAX



Web Clients: AJAX

• Asynchronous JavaScript And XML
– Bring web services to web clients (JavaScript)

• Asynchronous
– Client not blocked while waiting for result

• JavaScript
– Request can be invoked from JavaScript

(using XMLHTTPRequest)
– JavaScript may also modify the Document Object Model (DOM): the elements 

of the page: content, attributes, styles, events

• XML
– Data sent & received as XML … but JSON encodings can also be used

77February 8, 2021 © 2021 Paul Krzyzanowski



AJAX & XMLHttpRequest
• Allow Javascript to make HTTP requests and process results 

(change page without refresh)

var ajax = new XMLHttpRequest();
ajax.onreadystatechange = function() {

// stuff to do when the request is ready
}
ajax.open("GET", "http://poopybrain.com/stuff.txt", true);
ajax.send();

• Tell object:
– Type of request you’re making, URL to request
– Function to call when request is made

© 2021 Paul Krzyzanowski



AJAX on the Web
• AJAX ushered in Web 2.0 – responsive web pages

• Early high-profile AJAX sites:
– Microsoft Outlook Web Access, Gmail, Google Maps, Writely (Google Docs), 

…

79February 8, 2021 © 2021 Paul Krzyzanowski



The End

February 8, 2021 80© 2021 Paul Krzyzanowski


