
CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 2: Part 1
Point-to-point communication:
Remote Procedure Calls

© 2021 Paul Krzyzanowski. No part of this
content, may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

Network Communications

• TCP: Reliable, in-order byte stream

• UDP: Unreliable, message stream (order not guaranteed)

Data Link Layer (2)

Network Layer (3)

Transport Layer (4)

Ethernet, Wi-Fi, DOCSIS, ATM, Frame Relay, …

Internet Protocol: IPv4, IPv6

TCP, UDP

February 8, 2021 CS 417 © 2021 Paul Krzyzanowski 2

Is UDP that bad?
• Unreliable & out-of-order data?
– Rare in many (most) environments
– Data will arrive correctly … most of the time

• TCP requires storing & managing state
– Sequence numbers
– Buffering out-of-order data
– Acknowledgements
– Flow control

February 8, 2021 CS 417 © 2021 Paul Krzyzanowski 3

TCP Upsides & Downsides
• Upsides – huge!
– In-order, reliable byte streams

• Downsides
– Memory use with lots of connections
– Recovery
• All state lost if a system goes down – connections will need to be re-established

– Increased latency
• Session setup
• Data may not be immediately transmitted or presented to the receiving app

February 8, 2021 CS 417 © 2021 Paul Krzyzanowski 4

UDP Upsides & Downsides
• Downsides
– Delivery & message order not guaranteed

• Upsides
– Fewer kernel resources
– No setup overhead
– Received data immediately sent & delivered to the application
– No state recovery – traffic can be easily redirected to a standby system

February 8, 2021 CS 417 © 2021 Paul Krzyzanowski 5

Identifying Sessions:UDP
All traffic goes to a socket that reads from a host address & port

Host 1

Host 2

Host 3

Host 4
s1

February 8, 2021 CS 417 © 2021 Paul Krzyzanowski 6

Identifying Sessions: TCP
Unique channels identified by
– Remote host, Remote port, Local host, Local port
– One socket for listening for new connections on a local host, port
– Separate communication socket for each “connection”

Host 1

Host 2

Host 3

Host 4

s1

s2

s3

February 8, 2021 CS 417 © 2021 Paul Krzyzanowski 7

Software interaction model
• Socket API: all we get from the OS to access the network

• Socket = distinct end-to-end communication channels

read/write interface
• Line-oriented, text-based protocols common
– Not efficient but easy to debug & use

8February 8, 2021 CS 417 © 2021 Paul Krzyzanowski

Sample SMTP Interaction

February 8, 2021 CS 417 © 2021 Paul Krzyzanowski 9

$ telnet porthos.rutgers.edu 25
Trying 128.6.25.90...
Connected to porthos.rutgers.edu.
Escape character is '^]'.
220 porthos.cs.rutgers.edu ESMTP Postfix (Ubuntu)
HELO poopybrain.com
250 porthos.cs.rutgers.edu
MAIL FROM: <paul@poopybrain.com>
250 2.1.0 Ok
RCPT TO: <pxk@cs.rutgers.edu>
250 2.1.5 Ok
DATA
354 End data with <CR><LF>.<CR><LF>
From: Paul Krzyzanowski <myname@somewhere.edu>
Subject: test message
Date: Mon, 3 Feb 2021 17:00:16 -0500
To: Whomever <testuser@pk.org>

Hi,
This is a test
.
250 2.0.0 Ok: queued as 82D315F7C5
quit
221 2.0.0 Bye
Connection closed by foreign host.

This is the message body.
Headers may define the structure of the
message but are ignored for delivery.

SMTP = Simple Mail Transfer Protocol

Sample HTTP Interaction

February 8, 2021 CS 417 © 2021 Paul Krzyzanowski 10

$ telnet www.google.com 80
Trying 172.217.12.196...
Connected to www.google.com.
Escape character is '^]'.
GET /index.html HTTP/1.1
HOST: www.google.com
Accept: image/gif, image/jpeg, */*
Accept-Language: en-us
User-Agent: Mozilla/4.0

HTTP/1.1 200 OK
Date: Thu, 04 Feb 2021 22:58:25 GMT
Expires: -1
Cache-Control: private, max-age=0
Content-Type: text/html; charset=ISO-8859-1
...
Transfer-Encoding: chunked

5584
<!doctype html><html itemscope=""
itemtype="http://schema.org/WebPage"
lang="en"><head>

…
…

First part of the response –
HTTP headers

HTTP = Hypertext Transfer Protocol

Second part of the response –
HTTP content

Problems with the sockets API
The sockets interface forces a read/write mechanism

Programming is often easier with a functional interface

To make distributed computing look more like centralized computing,
I/O (read/write) is not the way to go

11February 8, 2021 CS 417 © 2021 Paul Krzyzanowski

RPC
1984: Birrell & Nelson
– Mechanism to call procedures on other machines

Remote Procedure Call

Goal: it should appear to the programmer that a
normal call is taking place

12February 8, 2021 CS 417 © 2021 Paul Krzyzanowski

Implementing RPC
No architectural support for remote procedure calls

Simulate it with tools we have (local procedure calls)

Simulation makes RPC a
language-level construct

instead of an
operating system construct

The OS gives
us sockets

The compiler creates
code to send

messages to invoke
remote functions

13February 8, 2021 CS 417 © 2021 Paul Krzyzanowski

Implementing RPC
The trick:

Create stub functions
to make it appear to the user that the call is local

On the client
The stub function (proxy) has the function’s interface
Packages parameters and calls the server

On the server
The stub function (skeleton) receives the request and calls the local function

14February 8, 2021 CS 417 © 2021 Paul Krzyzanowski

client server

Stub functions

network routines

server functions

server stub
(skeleton)

network routines

1. Client calls stub (params on stack)

client functions

client stub
(proxy)

15February 8, 2021 CS 417 © 2021 Paul Krzyzanowski

OS OS

client server

Stub functions

server functions

server stub
(skeleton)

network routines

2. Stub marshals params to network message

client functions

client stub
(proxy)

network routines

Marshalling = put parameters in a form suitable for transmission over a network (serialized)
16February 8, 2021 CS 417 © 2021 Paul Krzyzanowski

OS OS

client server

Stub functions
3. Network message sent to server

client functions

client stub
(proxy)

network routines

server functions

server stub
(skeleton)

network routines

17February 8, 2021 CS 417 © 2021 Paul Krzyzanowski

OS OS

client server

Stub functions
4. Receive message: send it to server stub

client functions

client stub
(proxy)

network routines

server functions

server stub
(skeleton)

network routines

18February 8, 2021 CS 417 © 2021 Paul Krzyzanowski

OS OS

client server

Stub functions
5. Unmarshal parameters, call server function

client functions

client stub
(proxy)

network routines

server functions

server stub
(skeleton)

network routines

19February 8, 2021 CS 417 © 2021 Paul Krzyzanowski

OS OS

client server

Stub functions
6. Return from server function

client functions

client stub
(proxy)

network routines

server functions

server stub
(skeleton)

network routines

20February 8, 2021 CS 417 © 2021 Paul Krzyzanowski

OS OS

client server

Stub functions
7. Marshal return value and send message

client functions

client stub
(proxy)

network routines

server functions

server stub
(skeleton)

network routines

21February 8, 2021 CS 417 © 2021 Paul Krzyzanowski

OS OS

client server

Stub functions
8. Transfer message over network

client functions

client stub
(proxy)

network routines

server functions

server stub
(skeleton)

network routines

22February 8, 2021 CS 417 © 2021 Paul Krzyzanowski

OS OS

client server

Stub functions
9. Receive message: client stub is receiver

client functions

client stub
(proxy)

network routines

server functions

server stub
(skeleton)

network routines

23February 8, 2021 CS 417 © 2021 Paul Krzyzanowski

OS OS

client server

Stub functions
10. Unmarshal return value(s), return to client code

client functions

network routines

server functions

server stub
(skeleton)

network routines

24

client stub
(proxy)

February 8, 2021 CS 417 © 2021 Paul Krzyzanowski

OS OS

A client proxy looks like the remote function

• Client stub has the same interface as the remote function

• Looks & feels like the remote function to the programmer
– But its function is to
• Marshal parameters
• Send the message
• Wait for a response from the server
• Unmarshal the response & return the appropriate data
• Generate exceptions if problems arise

25February 8, 2021 CS 417 © 2021 Paul Krzyzanowski

1. Dispatcher – the listener
– Receives client requests
– Identifies appropriate function (method)

2. Skeleton – the unmarshaller & caller
– Unmarshals parameters
– Calls the local server procedure
– Marshals the response & sends it back to the dispatcher

All this is invisible to the programmer
– The programmer doesn’t deal with any of this
– Dispatcher + Skeleton may be integrated
• Depends on implementation

A server stub contains two parts

26February 8, 2021 CS 417 © 2021 Paul Krzyzanowski

Receive requests

Unmarshal data

User function

RPC Benefits
• RPC gives us a procedure call interface

• Writing applications is simplified
– RPC hides all network code into stub functions
– Application programmers don’t have to worry about details
• Sockets, port numbers, byte ordering

• Where is RPC in the OSI model?
– Layer 5: Session layer: Connection management
– Layer 6: Presentation: Marshaling/data representation
– Uses the transport layer (4) for communication (TCP/UDP)

27February 8, 2021 CS 417 © 2021 Paul Krzyzanowski

RPC has challenges

28February 8, 2021 CS 417 © 2021 Paul Krzyzanowski

RPC Issues
• Parameter passing
– Pass by value or pass by reference?
– Pointerless representation

• Service binding. How do we locate the server endpoint?
– Central DB
– DB of services per host

• Transport protocol
– TCP? UDP? Both?

• When things go wrong
– Opportunities for failure

February 8, 2021 CS 417 © 2021 Paul Krzyzanowski 29

When things go wrong
• Semantics of remote procedure calls
– Local procedure call: exactly once

• Most RPC systems will offer either
– at least once semantics
– or at most once semantics

• Decide based on application
– idempotent functions: may be run any number of times without harm
– non-idempotent functions: those with side-effects

• Ideally – design your application to be idempotent
– … and stateless
– Not always easy!
– Store transaction IDs, previous return data, etc.

30February 8, 2021 CS 417 © 2021 Paul Krzyzanowski

More issues
Performance
– RPC is slower … a lot slower (why?)

Security
– messages may be visible over network – do we need to hide them?
– Authenticate client?
– Authenticate server?

31February 8, 2021 CS 417 © 2021 Paul Krzyzanowski

Programming with RPC
Language support
– Many programming languages have no language-level concept of remote

procedure calls
(C, C++, Java <J2SE 5.0, …)
• These compilers will not automatically generate client and server stubs

– Some languages have support that enables RPC
(Java, Python, Haskell, Go, Erlang)
• But we may need to deal with heterogeneous environments

(e.g., Java communicating with a Python service)

Common solution
– Interface Definition Language (IDL): describes remote procedures

– Separate compiler that generates stubs (pre-compiler)

32February 8, 2021 CS 417 © 2021 Paul Krzyzanowski

Interface Definition Language (IDL)
• Allow programmer to specify remote procedure interfaces

(names, parameters, return values)

• Pre-compiler can use this to generate client and server stubs
– Marshaling code
– Unmarshaling code
– Network transport routines
– Conform to defined interface

• An IDL looks similar to function prototypes

February 8, 2021 CS 417 © 2021 Paul Krzyzanowski 33

RPC compiler

IDL RPC
compiler

client code (main)

server functions

client stub

headers

server skeleton

data conversion

data conversion compiler

compiler server

client

Code you write

Code RPC compiler generates

34February 8, 2021 CS 417 © 2021 Paul Krzyzanowski

Sometimes called a
protocol compiler

Writing the program
• Client code has to be modified
– Initialize RPC-related options
• Identify transport type
• Locate server/service

– Handle failure of remote procedure calls

• Server functions
– Generally need little or no modification

35February 8, 2021 CS 417 © 2021 Paul Krzyzanowski

The End

February 8, 2021 36CS 417 © 2021 Paul Krzyzanowski

