Virtual Private Networks

Distributed Systems
Paul Krzyzanowski

Private networks

Problem
- You have several geographically separated local area networks that you would like to have connected securely

Solution
- Set up a private network line between the locations
- Routers on either side will be enabled to route packets over this private line
Private networks

- Problem: $$$$¥¥££€€€€€!

Virtual private networks (VPNs)

Alternative to private networks
- Use the public network (internet)

Service appears to users as if they were connected directly over a private network
- Public infrastructure is used in the connection

LAN A (New York) LAN B (London)
Building a VPN: tunneling

Tunneling
- Links two network devices such that the devices appear to exist on a common, private backbone
- Achieve it with encapsulation of network packets

LAN A (New York)
192.168.1.x

LAN B (London)
192.168.2.x

src: 192.168.1.10
dest: 192.168.2.32
data

external address: 129.42.16.99
dest: 17.254.0.91
Tunneling

LAN A (New York)
192.168.1.x

LAN B (London)
192.168.2.x

- route packets for 192.168.2.x to VPN router
- envelope packet
- send it to remote router

external address:
129.42.16.99

external address:
17.254.0.91

src:
192.168.1.10

dest:
192.168.2.32

data

Tunneling

LAN A (New York)
192.168.1.x

LAN B (London)
192.168.2.x

- accept packets from 129.42.16.99
- extract data (original IP packet)
- send on local network

external address:
129.42.16.99

external address:
17.254.0.91

src:
129.42.16.99

dest:
17.254.0.91

data

src:
192.168.1.10

dest:
192.168.2.32

src:
129.42.16.99

dest:
17.254.0.91

data
Building a VPN: tunneling

Operation
- LAN-1 and LAN-2 each expose a single outside address and port.
- A machine in the DMZ (typically running firewall software) listens on this address and port.
- On LAN-1, any packets addressed to LAN-2 are routed to this system.
 - VPN software takes the entire packet that is destined for LAN-2 and, treating it as data, sends it over an established TCP/IP connection to the listener on LAN-2.
- On LAN-2, the software extracts the data (the entire packet) and sends it out on its local area network.

Building a VPN: security

No need to make all machines in the local area networks accessible to the public network ... just the router.

BUT... an intruder can:
- examine the encapsulated packets
- forge new encapsulated packet

Solution:
- encrypt the encapsulated packets
 - Symmetric algorithm for encryption using session key
- need mechanism for key exchange
IPSEC: RFC 1825, 1827

- IP-layer security mechanism
- Covers authentication and encryption
- Application gets benefits of network encryption without modification
- Additional header added to packet:
 - **IP Authentication header**
 - Identifies proper source and destination - basis of point-to-point authentication
 - **Signature for IP header**
 - **Encapsulating Security Protocol (ESP)**
 - Tunnel mode: encrypt entire IP packet (data and IP/TCP/UDP headers)
 - or Transport mode: encrypt only IP/TCP/UDP headers (faster)
- Encryption via RC4, DES, DES3, or IDEA
- Key management: manual, Diffie-Hellman, or RSA

IPSEC

simple tunnel

| src: 129.42.16.99 | dest: 17.254.0.91 | src: 192.168.1.10 | dest: 192.168.2.32 | data |

with AH

| src: 129.42.16.99 | dest: 17.254.0.91 | src: 192.168.1.10 | dest: 192.168.2.32 | data |

with AH+ESP

| src: 129.42.16.99 | dest: 17.254.0.91 | src: 192.168.1.10 | dest: 192.168.2.32 | data |

Authentication header. Validate:
- Packet not modified
- Packet originated from peer
PPTP

- PPTP: point-to-point tunneling protocol
- Extension to PPP developed by Microsoft
- Encapsulates IP, IPX, NetBEUI
- Conceptually similar to IPSEC
 - Flawed security

The end