Distributed Systems

23. Cryptographic Systems: An Brief Introduction

Paul Krzyzanowski
Rutgers University
Fall 2017
Cryptography ≠ Security

Cryptography may be a component of a secure system

Adding cryptography may not make a system secure
Cryptography: what is it good for?

• **Authentication**
 – determine origin of message

• **Integrity**
 – verify that message has not been modified

• **Nonrepudiation**
 – sender should not be able to falsely deny that a message was sent

• **Confidentiality**
 – others cannot read contents of the message
Terms

Plaintext (cleartext) message P

Encryption $E(P)$

Produces Ciphertext, $C = E(P)$

Decryption, $P = D(C)$

Cipher = cryptographic algorithm
Terms: types of ciphers

- Restricted cipher
- Symmetric algorithm
- Public key algorithm
Restricted cipher

Secret algorithm

• If you know the algorithm, you can encrypt & decrypt

• Vulnerable to:
 – Leaking
 – Reverse engineering

• Hard to validate its effectiveness (who will test it?)

• Not a viable approach!
Symmetric-key algorithm

• Known algorithm but we introduce a secret parameter – the key

• Same secret key, K, for encryption & decryption

 \[C = E_K(P) \]
 \[P = D_K(C) \]

• Examples: AES, 3DES, IDEA, RC5

• Key length
 – Determines number of possible keys
 • DES: 56-bit key: $2^{56} = 7.2 \times 10^{16}$ keys
 • AES-256: 256-bit key: $2^{256} = 1.1 \times 10^{77}$ keys
 – Brute force attack: try all keys
The power of 2

Adding one extra bit to a key doubles the search space

Suppose it takes 1 second to search through all keys with a 20-bit key

<table>
<thead>
<tr>
<th>key length</th>
<th>number of keys</th>
<th>search time</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 bits</td>
<td>1,048,576</td>
<td>1 second</td>
</tr>
<tr>
<td>21 bits</td>
<td>2,097,152</td>
<td>2 seconds</td>
</tr>
<tr>
<td>32 bits</td>
<td>4.3×10^9</td>
<td>~ 1 hour</td>
</tr>
<tr>
<td>56 bits</td>
<td>7.2×10^{16}</td>
<td>2,178 years</td>
</tr>
<tr>
<td>64 bits</td>
<td>1.8×10^{19}</td>
<td>> 557,000 years</td>
</tr>
<tr>
<td>256 bits</td>
<td>1.2×10^{77}</td>
<td>3.5×10^{63} years</td>
</tr>
</tbody>
</table>

Distributed & custom hardware efforts typically allow us to search between 1 and >100 billion 64-bit (e.g., RC5) keys per second
Communicating with symmetric cryptography

• Both parties must agree on a secret key, K
• Message is encrypted, sent, decrypted at other side

$E_K(P)$

$D_K(C)$

Bob

Alice

• Key distribution must be secret
 – otherwise messages can be decrypted
 – users can be impersonated
Key explosion

Each pair of users needs a separate key for secure communication.

2 users: 1 key

3 users: 3 keys

6 users: 15 keys

4 users: 6 keys

100 users: 4,950 keys

1000 users: 399,500 keys

\[n \text{ users: } \frac{n(n - 1)}{2} \text{ keys} \]
Key distribution

Secure key distribution is the biggest problem with symmetric cryptography
Diffie-Hellman Key Exchange

Key distribution algorithm

– First algorithm to use public/private “keys”

– *Not* public key encryption

– Uses a **one-way function**
 Based on difficulty of computing discrete logarithms in a finite field compared with ease of calculating exponentiation

Allows us to negotiate a secret **common key** without fear of eavesdroppers
Diffie-Hellman Key Exchange

All arithmetic performed in a field of integers modulo some large number

- Both parties agree on a **large prime number** \(p \) and a **number** \(\alpha < p \)
- Each party generates a public/private key pair

 Private key for user \(i \): \(X_i \)

 Public key for user \(i \): \(Y_i = \alpha^{X_i} \mod p \)
Diffie-Hellman exponential key exchange

• Alice has secret key X_A
• Alice has public key Y_A
• Alice computes

$$K = Y_B^{X_A} \mod p$$

$K = (Bob’s public key) ^ (Alice’s private key) \mod p$
Diffie-Hellman exponential key exchange

- Alice has secret key X_A
- Alice has public key Y_A
- Alice computes

$$K = Y_B^{X_A} \mod p$$

- Bob has secret key X_B
- Bob has public key Y_B
- Bob computes

$$K = Y_A^{X_B} \mod p$$

$$K' = (Alice's\ public\ key) \ (Bob's\ private\ key) \ mod\ p$$
Diffie-Hellman exponential key exchange

- Alice has secret key X_A
- Alice has public key Y_A
- Alice computes
 \[K = Y^X_A \mod p \]
- expanding:
 \[K = Y^X_A \mod p \]
 \[= (\alpha^X_B \mod p)^X_A \mod p \]
 \[= \alpha^{X_BX_A} \mod p \]

- Bob has secret key X_B
- Bob has public key Y_B
- Bob computes
 \[K = Y^X_B \mod p \]
- expanding:
 \[K = Y^X_B \mod p \]
 \[= (\alpha^X_A \mod p)^X_B \mod p \]
 \[= \alpha^{X_AX_B} \mod p \]

\[K = K' \]

K is a **common key**, known only to Bob and Alice
RSA Public Key Cryptography

• Ron Rivest, Adi Shamir, Leonard Adleman created a public key encryption algorithm in 1977

• Each user generates two keys:
 – Private key (kept secret)
 – Public key (can be shared with anyone)

• Algorithm based on the difficulty of factoring large numbers
 – keys are functions of a pair of large (~300 digits) prime numbers
Public-key algorithm

Two related keys:

\[
C = E_{K_1}(P) \quad P = D_{K_2}(C)
\]

\[
C' = E_{K_2}(P) \quad P = D_{K_1}(C')
\]

\(K_1\) is a public key
\(K_2\) is a private key

Examples:
- RSA and Elliptic curve algorithms
- DSS (digital signature standard)

Key length
- Unlike symmetric cryptography, not every number is a valid key
- 3072-bit RSA = 256-bit elliptic curve = 128-bit symmetric cipher
- 15360-bit RSA = 521-bit elliptic curve = 256-bit symmetric cipher
Communication with public key algorithms

Different keys for encrypting and decrypting
- No need to worry about key distribution
- Share public keys
- Keep private keys secret
Communication with public key algorithms

Alice

Alice’s public key: K_A

(Bob’s private key: K_b)

encrypt message with Bob’s public key

$E_B(P)$

decrypt message with Alice’s private key

$D_a(C)$

Bob

Bob’s public key: K_B

(Alice’s private key: K_a)

decrypt message with Bob’s private key

$D_b(C)$

encrypt message with Alice’s public key

$E_A(P)$

November 26, 2017

© 2013-2016 Paul Krzyzanowski
Hybrid Cryptosystems

• **Session key**: randomly-generated key for one communication session

• Use a **public key algorithm** to send the session key

• Use a **symmetric algorithm** to encrypt data with the session key

Public key algorithms are almost never used to encrypt messages

– MUCH slower; vulnerable to *chosen-plaintext attacks*

– RSA-2048 approximately 55x slower to encrypt and 2,000x slower to decrypt than AES-256
Communication with a hybrid cryptosystem

Alice

Bob

Pick a random **session key**, K

encrypt session key with Bob’s public key

$K \xrightarrow{E_B(K)}$ encrypted session key

Bob’s public key: K_B

$K = D_b(E_B(K))$

Bob decrypts K with his private key

Now Bob knows the secret session key, K
Communication with a hybrid cryptosystem

Alice

encrypt message using a symmetric algorithm and key K

Bob

Bob’s public key: K_B

$K = D_b(E_B(K))$

decrypt message using a symmetric algorithm and key K
Communication with a hybrid cryptosystem

Alice

\[E_K(P) \rightarrow E_B(K) \rightarrow D_K(C') \]

decrypt message using a symmetric algorithm and key \(K \)

Bob

\[\text{Bob's public key: } K_B \]

\[K = D_b(E_B(K)) \]

\[D_K(C) \rightarrow E_K(P') \rightarrow D_K(C) \]

encrypt message using a symmetric algorithm and key \(K \)

November 26, 2017

© 2013-2016 Paul Krzyzanowski
Message Authentication
One-way functions

• Easy to compute in one direction
• Difficult to compute in the other

Examples:

Factoring:
\[pq = N \]
EASY

find \(p, q \) given \(N \)
DIFFICULT

Discrete Log:
\[a^b \mod c = N \]
EASY

find \(b \) given \(a, c, N \)
DIFFICULT

“Difficult” = no known short-cuts; requires an exhaustive search
Example

Example with an 18 digit number

\[A = 289407349786637777 \]

\[A^2 = 83756614110525308948445338203501729 \]

Middle square, \(B = 110525308948445338 \)

Given \(A \), it is easy to compute \(B \)

Given \(B \), it is difficult to compute \(A \)
Message Integrity: Digital Signatures

Validate:

1. The creator (signer) of the content
2. The content has not been modified since it was signed

The content itself does not have to be encrypted
Encrypting a message with a private key is the same as signing it!

Encrypt message with Alice’s private key

Decrypt message with Bob’s public key
But…

• Not quite what we want
 – We don’t want to permute or hide the content
 – We just want Bob to verify that the content came from Alice

• Moreover…
 – Public key cryptography is much slower than symmetric encryption
 – What if Alice sent Bob a multi-GB movie?
Hash functions

• **Cryptographic hash function** (also known as a digest)
 – Input: arbitrary data
 – Output: fixed-length bit string

• **Properties**

 – **One-way function**
 • Given $H=\text{hash}(M)$, it should be difficult to compute M, given H

 – **Collision resistant**
 • Given $H=\text{hash}(M)$, it should be difficult to find M', such that $H=\text{hash}(M')$
 • For a hash of length L, a perfect hash would take $2^{(L/2)}$ attempts

 – **Efficient**
 • Computing a hash function should be computationally efficient
Popular hash functions

• SHA-2
 – Designed by the NSA; published by NIST
 – SHA-224, SHA-256, SHA-384, SHA-512
 • e.g., Linux passwords used MD5 and now SHA-512

• SHA-3
 – NIST standard as of 2015

• MD5
 – 128 bits (not often used now since weaknesses were found)

• Hash functions derived from ciphers:
 – Blowfish (used for password hashing in OpenBSD)
 – 3DES – used for old Linux password hashes
Digital signatures using hash functions

• You:
 – Create a hash of the message
 – Encrypt the hash with your private key & send it with the message

• Recipient:
 – Decrypts the encrypted hash using your public key
 – Computes the hash of the received message
 – Compares the decrypted hash with the message hash
 – If they’re the same then the message has not been modified
Message Authentication Codes vs. Signatures

• **Message Authentication Code (MAC)**
 – Hash of message encrypted with a symmetric key:
 An intruder will not be able to replace the hash value

• **Digital Signature**
 – Hash of message encrypted with the owner’s private key
 • Alice encrypts the hash with her private key
 • Bob validates it by decrypting it with her public key & comparing with \(\text{hash}(M)\)
 – Provides **non-repudiation**: recipient cannot change the encrypted hash
Digital signatures: public key cryptography

Alice generates a hash of the message

Alice

Bob

H(P)
Alice encrypts the hash with her private key
This is her **signature.**
Digital signatures: public key cryptography

Alice sends Bob the message & the encrypted hash
Alice

Bob

1. Bob decrypts the hash using Alice’s public key
2. Bob computes the hash of the message sent by Alice

Digital signatures: public key cryptography
Digital signatures: public key cryptography

If the hashes match, the signature is valid – the encrypted hash *must* have been generated by Alice.
Digital signatures: multiple signers

Charles:
- Generates a hash of the message, $H(P)$
- Decrypts Alice’s signature with Alice’s public key
 - Validates the signature: $D_A(S) \overset?= H(P)$
- Decrypts Bob’s signature with Bob’s public key
 - Validates the signature: $D_B(S') \overset?= H(P)$
Covert AND authenticated messaging

If we want to keep the message secret
 – combine encryption with a digital signature

Use a session key:
 – Pick a random key, K, to encrypt the message with a symmetric algorithm
 – encrypt K with the public key of each recipient
 – for signing, encrypt the hash of the message with sender’s private key
Alice generates a digital signature by encrypting the message with her private key.
Alice picks a random key, K, and encrypts the message P with it using a symmetric cipher.

$$C = E_K(M)$$

$$S = E_a(H(M))$$
Alice encrypts the session key for each recipient of this message using their public keys.

Covert and authenticated messaging

Alice encrypts the session key for each recipient of this message using their public keys.
Covert and authenticated messaging

The aggregate message is sent to Bob & Charles

Message: M
Signature: $S = E_a(H(P))$
Key for Bob: K
Key for Charles: K

Sender: Alice

November 26, 2017
© 2013-2016 Paul Krzyzanowski
Cryptographic toolbox

- Symmetric encryption
- Public key encryption
- One-way hash functions
- Random number generators
The end