Distributed Systems

22. Spark

Paul Krzyzanowski
Rutgers University
Fall 2016
Apache Spark

• Goal: generalize MapReduce
 – Similar shard-and-gather approach to MapReduce
 – Add fast data sharing & general DAGs (graphs)

• Generic data storage interfaces
 – Storage agnostic: use HDFS, Cassandra database, whatever
 – Resilient Distributed Data (RDD) sets
 • An RDD is a chunk of data that gets processed – a large collection of stuff
 – In-memory caching

• More general functional programming model
 – Transformations and actions
 – In Map-Reduce, transformation = map, action = reduce
High-level view

- **Job** = bunch of transformations & actions on RDDs
- Cluster manager: Allocates worker nodes
High-level view

- **Driver** breaks the job into **tasks**
- Sends **tasks** to **worker** nodes where the data lives
Worker node

- One or more **executors**
 - JVM process
 - Talks with cluster manager
 - Receives **tasks**
 - JVM code (e.g., compiled Java, Clojure, Scala, Jruby, …)
 - Task = transformation or action
 - Data to be processed (RDD)
 - Local to the node
 - Cache
 - Stores frequently-used data in memory
 - Key to high performance
Data & RDDs

• Data organized into RDDs:
 – Big data: partition it across lots of computers

• How are RDDs created?

 1. **Create from any file** stored in HDFS or other storage supported in Hadoop (Amazon S3, HDFS, HBase, Cassandra, etc.)
 • Created externally (e.g., event stream, text files, database)
 • Example:
 – Query a database & make query the results an RDD
 – Any Hadoop InputFormat, such as a list of files or a directory

 2. ** Streaming sources (via Spark Streaming)**
 • Fault-tolerant stream with a sliding window

 3. An RDD can be the ** output of a Spark transformation function**
 • Example, filter out data, select key-value pairs
Properties of RDDs

Main Properties

• Immutable
 – You cannot change it – only create new RDDs
 – The framework will eventually collect unused RDDs

• Partitioned – parts of an RDD go to different servers
 – Default partitioning function = $\text{hash(key)} \ mod \ \text{server_count}$

Optional Properties

• Typed: they’re not BLOBs
 – Embedded data structure – e.g., key-value set

• Ordered
 – Elements in an RDD can be sorted
Operations on RDDs

Two types of operations on RDDs

• Transformations
 – Lazy – not computed immediately
 – Transformed RDD is recomputed when an action is run on it
 • Work backwards:
 – What RDDs do you need to apply to get an action?
 – What RDDs do you need to apply to get the input to this RDD?
 – RDD can be persisted into memory or disk storage

• Actions
 – Finalizing operations
 • Reduce, count, grab samples, write to file
Spark Transformations

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>map (func)</td>
<td>Pass each element through a function <code>func</code></td>
</tr>
<tr>
<td>filter (func)</td>
<td>Select elements of the source on which <code>func</code> returns true</td>
</tr>
<tr>
<td>flatmap (func)</td>
<td>Each input item can be mapped to 0 or more output items</td>
</tr>
<tr>
<td>sample (withReplacement, fraction, seed)</td>
<td>Sample a fraction fraction of the data, with or without replacement, using a given random number generator seed</td>
</tr>
<tr>
<td>union (otherdataset)</td>
<td>Union of the elements in the source data set and <code>otherdataset</code></td>
</tr>
<tr>
<td>distinct ([numtasks])</td>
<td>The distinct elements of the source dataset</td>
</tr>
</tbody>
</table>
Spark Transformations

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>groupByKey([numtasks])</code></td>
<td>When called on a dataset of (K, V) pairs, returns a dataset of (K, seq[V]) pairs</td>
</tr>
<tr>
<td><code>reduceByKey(func, [numtasks])</code></td>
<td>Aggregate the values for each key using the given <code>reduce</code> function</td>
</tr>
<tr>
<td><code>sortByKey([ascending], [numtasks])</code></td>
<td>Sort keys in ascending or descending order</td>
</tr>
<tr>
<td><code>join(otherDataset, [numtasks])</code></td>
<td>Combines two datasets, (K, V) and (K, W) into (K, (V, W))</td>
</tr>
<tr>
<td><code>cogroup(otherDataset, [numtasks])</code></td>
<td>Given (K, V) and (K, W), returns (K, Seq[V], Seq[W])</td>
</tr>
<tr>
<td><code>cartesian(otherDataset)</code></td>
<td>For two datasets of types T and U, returns a dataset of (T, U) pairs</td>
</tr>
</tbody>
</table>
Spark Actions

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>reduce(func)</td>
<td>Aggregate elements of the dataset using <code>func</code>.</td>
</tr>
<tr>
<td>collect(func, [numtasks])</td>
<td>Return all elements of the dataset as an array</td>
</tr>
<tr>
<td>count</td>
<td>Return the number of elements in the dataset</td>
</tr>
<tr>
<td>first</td>
<td>Return the first element of the dataset</td>
</tr>
<tr>
<td>take(n)</td>
<td>Return an array with the first <code>n</code> elements of the dataset</td>
</tr>
<tr>
<td>takeSample(withReplacement, fraction, seed)</td>
<td>Return an array with a random sample of <code>num</code> elements of the dataset</td>
</tr>
</tbody>
</table>
Spark Actions

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>saveAsTextFile(path)</code></td>
<td>Write dataset elements as a text file</td>
</tr>
<tr>
<td><code>saveAsSequenceFile(path)</code></td>
<td>Write dataset elements as a Hadoop SequenceFile</td>
</tr>
<tr>
<td><code>countByKey()</code></td>
<td>For (K, V) RDDs, return a map of (K, Int) pairs with the count of each key</td>
</tr>
<tr>
<td><code>foreach(func)</code></td>
<td>Run <code>func</code> on each element of the dataset</td>
</tr>
</tbody>
</table>
Data Storage

• Spark does not care how source data is stored
 – RDD connector determines that
 – E.g., read RDDs from tables in a Cassandra DB; write new RDDs to Cassandra tables

• RDD Fault tolerance
 – RDDs track the sequence of transformations used to create them
 – Enables recomputing of lost data
 • Go back to the previous RDD and apply the transforms again
Example: processing logs

- Transform (creates new RDDs)
 - Grab error message from a log
 - Grab only ERROR messages & extract the source of error
- Actions: Count mysql & php errors

```scala
// base RDD
val lines = sc.textFile("hdfs://...")

// transformed RDDs
val errors = lines.filter(_.startsWith("ERROR"))
val messages = errors.map(_.split("\t")).map(r => r(1))
messages.cache()

// action 1
messages.filter(_.contains("mysql")) .count()

// action 2
messages.filter(_.contains("php")) .count()
```
Spark Streaming

- Map-Reduce & Pregel expect static data
- Spark Streaming enables processing live data streams
 - Same programming operations
 - Input data is chunked into batches
 - Programmer specifies time interval
Spark Streaming: DStreams

• Discretized Stream = DStream
 – Continuous stream of data (from source or a transformation)
 – Appears as a continuous series of RDDs, each for a time interval

 ![Diagram of DStream and RDDs]

 – Each operation on a DStream translates to operations on the RDDs

 ![Diagram of flatMap and words operations]

 – Join operations allow combining multiple streams
Spark Summary

• Supports streaming
 – Handle continuous data streams via Spark Streaming

• Fast
 – Often up to 10x faster on disk and 100x faster in memory than MapReduce
 – General execution graph model
 • No need to have "useless" phases just to fit into the model
 – In-memory storage for RDDs

• Fault tolerant: RDDs can be regenerated
 – You know what the input data set was, what transformations were applied to it, and what output it creates
The end