Motivation

- Serving web content from one location presents problems
 - Scalability
 - Reliability
 - Performance

- “Flash crowd” problem
 - What if everyone comes to your site at once?

- Cache content and serve requests from multiple servers at the network edge (close to the user)
 - Reduce demand on site’s infrastructure
 - Provide faster service to users
 - Content comes from nearby servers

Focus on Content

- Computing is still done by the site host’s server(s)
- Offload the static parts—they often make up the bulk of the bytes:
 - Images
 - Video
 - CSS files
 - Static pages
Load Balancing

Increase capacity at the server.
Internet connectivity can be a bottleneck ... + latency from client to server.

Multihoming

• Get network links from multiple ISPs
• Server has one IP address but multiple links
• Announce address to upstream routers via BGP:
 Provides clients with a choice of routes and fault tolerance for a server’s ISP going down

Mirroring (Replication)

• Synchronize multiple servers
• Use multiple ISPs: location-based load balancing, ISP & server fault tolerance

Improving scalability, availability, & performance

• Scalability
 – Mirror (replicate) servers for load balancing among multiple servers
 – Multiple ISPs if network congestion is a concern

• Availability
 – Replicate servers
 – Multiple data centers & ISPs

• Performance
 – Cache content and serve requests from multiple servers at the network edge (close to the user)
 – Reduce demand on site’s infrastructure
 – Provide faster service to users
 – Content comes from nearby servers

But these approaches have problems!

• Local balancing
 – Data center or ISP can fail

• Multihoming
 – IP protocols (BGP) are often not quick to find new routes

• Mirroring at multiple sites
 – Synchronization can be difficult

• Proxy servers
 – Typically a client-side solution
 – Low cache hit rates

All require extra capacity and extra capital costs
Akamai Distributed Caching

- Company evolved from MIT research
- “Invent a better way to deliver Internet content”
- Tackle the “flash crowd” problem

Akamai runs on >240,000+ servers in >1,700 networks across >130 countries
- Delivers 15-30% of all web traffic
 - reaching over 30 Terabits per second

Akamai’s goal

Try to serve clients from servers likely to have the content
- Nearest: lowest round-trip time
- Available: server that is not too loaded
- Likely: server that is likely to have the data

Akamai Overlay Network

- The Internet is a collection of many autonomous networks
 - Connectivity is based on business decisions
 - Peering agreements, not performance
 - An ISP’s top performance incentives are:
 - Last-mile connectivity to end users
 - Connectivity to servers on the ISP
- Akamai’s Overlay network
 - Collection of caching servers at many, many ISPs
 - All know about each other

Overlay Network

1. Domain name lookup
 - Translated by mapping system to an edge server that can serve the content
 - Use custom DNS servers
 - Take requestor’s address into account to find the nearest edge
2. Browser sends request to the given edge server
 - Edge server may be able to serve content from its cache
 - May need to contact the origin server via the transport system

Mapping: Domain Name Lookup

- Akamai uses Dynamic DNS servers
- Resolve a host name based on:
 - user location (minimize network distance)
 - server health
 - server load
 - network status
 - load balancing
- Try to find an edge server at the customer’s ISP

Akamai collects network performance data

- Map network topology
 - Based on BGP and traceroute information
 - Estimate hops and transit time
- Content servers report their load to a monitoring application
- Monitoring app publishes load reports to a local (Akamai) DNS server
- Akamai DNS server determines which IP addresses to return when resolving names
- Load shedding:
 - If servers get too loaded, the DNS server will not respond with those addresses
Benefits of an overlay network CDN

1. Caching
 - Goal: Increase hit rate on edge servers
 - Reduce hits on origin servers
 - Static content can be served from caches
 - Dynamic content still goes back to the origin
 - Two-level caching
 - If edge servers don’t have the data, check with parent servers

1. Caching: types of content
 - Static content
 - Cached depending on original site’s requirements (never to forever)
 - Dynamic content
 - Caching proxies cannot do this
 - Akamai uses Edge Side Includes technology (www.esi.org)
 - Assemblies dynamic content on edge servers
 - Page is broken into fragments with independent caching properties
 - Assembled on demand
 - Streaming media
 - Live stream is sent to an entry-point server in the Akamai network
 - Stream is delivered from the entry-point server to multiple edge servers
 - Edge servers serve content to end users.

1. Routing
 - Route to parent servers or origin via the overlay network
 - Routing decision factors:
 - measured latency
 - packet loss
 - available bandwidth
 - Results in ranked list of alternate paths from edge to origin
 - Each intermediate node acts as a forwarder
 - Keep TCP connections active for efficiency

3. Security
 - High capacity
 - Overwhelm DDoS attacks
 - Expertise
 - Maintain systems and software
 - Extra security software
 - Hardened network stack
 - Detect & defend attacks
 - Shield the origin
 - Attacks hit the CDN, not the origin

Other Things CDNs Do
Signed URLs in Amazon CloudFront

- **Example: Amazon CloudFront CDN**
 - Similar in concept to Akamai
 - Requests for content are routed to the nearest edge location
 - Cached content with original located at origin servers
 - Integrates with back-end Amazon services
- **Private content: provide special URLs for restricted content**
 - Control access to content via a signed URL
 - URL contains:
 - policy or reference to a policy
 - Signature = encrypted hash
 - URL cannot be modified
 - Policies include:
 - Validity: start time & expiration time
 - Range of IP addresses that are allowed to access the object

Limelight Orchestrate™

- **Focus on video distribution and content management**
- **Video transcoding**
 - Encode video to a variety of formats
 - Support playback on various devices: different formats & bitrates
- **Ad insertion**
 - Integrate with ad servers (DoubleClick, LiveRail, Tremor, YuMe)
 - Pre-roll, post-roll, mid-roll, overlay, etc.

Limelight Orchestrate™ Transcoding

![Diagram of transcoding process]

Server-side Video Ad Insertion

Example: Limelight Reach Ads

![Diagram of ad insertion process]