Distributed Systems

21. Other parallel frameworks

Paul Krzyzanowski
Rutgers University
Fall 2018
Can we make MapReduce easier?
Apache Pig

• Why?
 – Make it easy to use MapReduce via scripting instead of Java
 – Make it easy to use multiple MapReduce stages
 – Built-in common operations for join, group, filter, etc.

• How to use?
 – Use Grunt – the pig shell
 – Submit a script directly to pig
 – Use the PigServer Java class
 – PigPen – Eclipse plugin

• Pig compiles to several Hadoop MapReduce jobs
Count Job (in Pig Latin)

A = LOAD 'myfile' AS (x, y, z);
B = FILTER A by x>0;
C = GROUP B by x;
D = FOREACH A GENERATE x, COUNT(B);
STORE D into 'output';

Pig Framework

- Parse
- Check
- Optimize
- Plan Execution
- Submit jar to Hadoop
- Monitor progress

Hadoop Execution

- Map: Filter
- Reduce: Counter
Pig: Loading Data

Load/store relations in the following formats:

- **PigStorage**: field-delimited text
- **BinStorage**: binary files
- **BinaryStorage**: single-field tuples with a value of `bytearray`
- **TextLoader**: plain-text
- **PigDump**: stores using `toString()` on tuples, one per line
Example

• Each statement defines a new dataset
 – Datasets can be given aliases to be used later

• FOREACH iterates over the members of a ”bag”
 – Input is grpd: list of log entries grouped by user
 – Output is group, COUNT(log): list of {user, count}

• FILTER applies conditional filtering

• ORDER applies sorting

log = LOAD ‘test.log’ AS (user, timestamp, query);
grpd = GROUP log by user;
cntd = FOREACH grpd GENERATE group, COUNT(log);
fltrd = FILTER cntd BY cnt > 50;
srtd = ORDER fltrd BY cnt;
STORE srted INTO ‘output’;
See pig.apache.org for full documentation
MapReduce isn’t always the answer

• MapReduce works well for certain problems
 – Framework provides
 • Automatic parallelization
 • Automatic job distribution

• For others:
 – May require many iterations
 – Data locality usually not preserved between Map and Reduce
 • Lots of communication between map and reduce workers
Bulk Synchronous Parallel (BSP)

Computing model for parallel computation

• Series of supersteps
 1. Concurrent computation
 2. Communication
 3. Barrier synchronization
Bulk Synchronous Parallel (BSP)
Bulk Synchronous Parallel (BSP)

Series of supersteps
1. Concurrent computation
2. Communication
3. Barrier synchronization

- Processes (workers) are randomly assigned to processors
- Each process uses only local data
- Each computation is asynchronous of other concurrent computation
- Computation time may vary

![Diagram of BSP process](image)

- Initial data
- Compute
- Input msgs

Superstep 0
Superstep 1
Bulk Synchronous Parallel (BSP)

Series of supersteps
1. Concurrent computation
2. Communication
3. Barrier synchronization

- Messaging is restricted to the end of a computation superstep
- Each worker sends a message to 0 or more workers
- These messages are inputs for the next superstep

Superstep 0
- Initial data
- Compute
- Input msgs
- Barrier
- Superstep 1
- Initial data
- Compute
- Input msgs
- Barrier

November 19, 2018
© 2017-2018 Paul Krzyzanowski
Bulk Synchronous Parallel (BSP)

Series of supersteps

1. Concurrent computation
2. Communication
3. Barrier synchronization

- The next superstep does not begin until all messages have been received
- Barriers ensure no deadlock: no circular dependency can be created
- Provide an opportunity to checkpoint results for fault tolerance
 - If failure, restart computation from last superstep

Superstep 0

Superstep 1
BSP Implementation: Apache Hama

• Hama: BSP framework on top of HDFS
 – Provides automatic parallelization & distribution
 – Uses Hadoop RPC
 • Data is serialized with Google Protocol Buffers
 – Zookeeper for coordination (Apache version of Google’s Chubby)
 • Handles notifications for Barrier Sync

• Good for applications with data locality
 – Matrices and graphs
 – Algorithms that require a lot of iterations

hama.apache.org
Hama programming (high-level)

• Pre-processing
 – Define the number of peers for the job
 – Split initial inputs for each of the peers to run their supersteps
 – Framework assigns a unique ID to each worker (peer)

• Superstep: the worker function is a superstep
 – `getCurrentMessage()` – input messages from previous superstep
 – Compute – your code
 – `send(peer, msg)` – send messages to a peer
 – `sync()` – synchronize with other peers (barrier)

• File I/O
 – Key/value model used by Hadoop MapReduce & HBase
 – `readNext(key, value)`
 – `write(key, value)`
For more information

• Architecture, examples, API

• Take a look at:
 – Apache Hama project page
 • http://hama.apache.org
 – Hama BSP tutorial
 • https://hama.apache.org/hama_bsp_tutorial.html
 – Apache Hama Programming document
 • http://bit.ly/1aiFbXS
Graph computing
Graphs are common in computing

• Social links
 – Friends
 – Academic citations
 – Music
 – Movies

• Web pages

• Network connectivity

• Roads

• Disease outbreaks
Processing graphs on a large scale is hard

• Computation with graphs
 – Poor locality of memory access
 – Little work per vertex

• Distribution across machines
 – Communication complexity
 – Failure concerns

• Solutions
 – Application-specific, custom solutions
 – MapReduce or databases
 • But require many iterations (and a lot of data movement)
 – Single-computer libraries: limits scale
 – Parallel libraries: do not address fault tolerance
 – BSP: close but too general
Pregel: a vertex-centric BSP

Input: directed graph

- A vertex is an object
 - Each vertex uniquely identified with a name
 - Each vertex has a modifiable value
- Directed edges: links to other objects
 - Associated with source vertex
 - Each edge has a modifiable value
 - Each edge has a target vertex identifier

http://googleresearch.blogspot.com/2009/06/large-scale-graph-computing-at-google.html
Computation: series of supersteps

- Same user-defined function runs on each vertex
 - Receives messages sent from the previous superstep
 - May modify the state of the vertex or of its outgoing edges
 - Sends messages that will be received in the next superstep
 - Typically to outgoing edges
 - But can be sent to any known vertex
 - May modify the graph topology

- Each superstep ends with a barrier (synchronization point)
Pregel: termination

Pregel terminates when every vertex votes to halt

• Initially, every vertex is in an active state
 – Active vertices compute during a superstep

• Each vertex may choose to deactivate itself by voting to halt
 – The vertex has no more work to do
 – Will not be executed by Pregel
 – UNLESS the vertex receives a message
 • Then it is reactivated
 • Will stay active until it votes to halt again

• Algorithm terminates when all vertices are inactive and there are no messages in transit
Pregel: output

- Output is the set of values output by the vertices
- Often a directed graph
 - May be non-isomorphic to original since edges & vertices can be added or deleted
- Or may be summary data
Examples of graph computations

- **Shortest path to a node**
 - Each iteration, a node sends the shortest distance received to all neighbors

- **Cluster identification**
 - Each iteration: get info about clusters from neighbors
 - Add myself
 - Pass useful clusters to neighbors (e.g., within a certain depth or size)
 - May combine related vertices
 - Output is a smaller set of disconnected vertices representing clusters of interest

- **Graph mining**
 - Traverse a graph and accumulate global statistics

- **Page rank**
 - Each iteration: update web page ranks based on messages from incoming links.
Simple example: find the maximum value

• Each vertex contains a value

• In the first superstep:
 – A vertex sends its value to its neighbors

• In each successive superstep:
 – If a vertex learned of a larger value from its incoming messages, it sends it to its neighbors
 – Otherwise, it votes to halt

• Eventually, all vertices get the largest value

• When no vertices change in a superstep, the algorithm terminates
Simple example: find the maximum value

Semi-pseudocode:

```cpp
class MaxValueVertex
    : public Vertex<int, void, int> {
    void Compute(MessageIterator *msgs) {
        int maxv = GetValue();
        for (; !msgs->Done(); msgs->Next())
            maxv = max(msgs.Value(), maxv);

        if (maxv > GetValue()) || (step == 0)) {
            *MutableValue() = maxv;
            OutEdgeIterator out = GetOutEdgeIterator();
            for (; !out.Done(); out.Next())
                sendMessageTo(out.Target(), maxv)
        } else
            VoteToHalt();
    }
};
```

1. vertex value type; 2. edge value type (none!); 3. message value type
Simple example: find the maximum value

Superstep 0: Each vertex propagates its own value to connected vertices

Superstep 1:
- V_0 updates its value: $6 > 3$
- V_3 updates its value: $6 > 1$
- V_1 and V_2 do not update so vote to halt

Active vertex 🟩
Inactive vertex 🟥
Simple example: find the maximum value

Superstep 0:
- Active vertex: 1
- Inactive vertex: 0
- Superstep 1:
 - Active vertex: 1
 - Inactive vertex: 0, 2, 3
- Superstep 2:
 - Active vertex: 1
 - Inactive vertex: 0, 2, 3

Superstep 2: V_1 receives a message – becomes active
V_3 updates its value: $6 > 2$
$V_1, V_2, \text{ and } V_3 \text{ do not update so vote to halt}$
Simple example: find the maximum value

Superstep 2:
- V_0 receives a message from V_2 - becomes active
- V_3 receives a message from V_2 - becomes active
- All vertices update their value

Superstep 3:
- V_1 receives a message from V_0 - becomes active
- V_3 receives a message from V_2 - becomes active
- No vertices update their value - all vote to halt

Done!
Locality

• Vertices and edges remain on the machine that does the computation

• To run the same algorithm in MapReduce
 – Requires chaining multiple MapReduce operations
 – Entire graph state must be passed from Map to Reduce
 … and again as input to the next Map
Pregel API: Basic operations

• A user subclasses a Vertex class

• Methods
 – **Compute**(MessageIterator*): Executed per active vertex in each superstep
 • MessageIterator identifies incoming messages from previous supersteps
 – **GetValue()**: Get the current value of the vertex
 – **MutableValue()**: Set the value of the vertex
 – **GetOutEdgeIterator()**: Get a list of outgoing edges
 • **Target()**: identify target vertex on an edge
 • **GetValue()**: get the value of the edge
 • **MutableValue()**: set the value of the edge
 – **SendMessageTo()**: send a message to a vertex
 • Any number of messages can be sent
 • Ordering among messages is not guaranteed
 • A message can be sent to any vertex (but our vertex needs to have its ID)
Pregel API: Advanced operations

Combiners

- Each message has an overhead – let’s reduce # of messages
 - Many vertices are processed per worker (multi-threaded)
 - Pregel can combine messages targeted to one vertex into one message

- Combiners are application specific
 - Programmer subclasses a Combiner class and overrides Combine() method

- No guarantee on which messages may be combined

![Combiner Diagram](image1)

Combiner

Sums input messages

4
8
1
5
6

24

![Combiner Diagram](image2)

Combiner

Minimum value

15
12
71
11
15

11
Aggregators

• Handle global data

• A vertex can provide a value to an aggregator during a superstep
 – Aggregator combines received values to one value
 – Value is available to all vertices in the next superstep

• User subclasses an Aggregator class

• Examples
 – Keep track of total edges in a graph
 – Generate histograms of graph statistics
 – Global flags: execute until some global condition is satisfied
 – Election: find the minimum or maximum vertex
Pregel API: Advanced operations

Topology modification

• Examples
 – If we’re computing a spanning tree: remove unneeded edges
 – If we’re clustering: combine vertices into one vertex

• Add/remove edges/vertices

• Modifications visible in the next superstep
Pregel Design
Execution environment

- Many copies of the program are started on a cluster of machines

- One copy becomes the **master**
 - Will not be assigned a portion of the graph
 - Responsible for coordination

- Cluster’s name server = **chubby**
 - Master registers itself with the name service
 - Workers contact the name service to find the master
Partition assignment

• **Master**
 – Determines # partitions in graph
 – One or more partitions assigned to each worker
 • Partition = set of vertices
 • Default: for N partitions
 \[
 \text{hash(vertex ID) mod } N \Rightarrow \text{worker}
 \]
 May deviate: e.g., place vertices representing the same web site in one partition
 • More than 1 partition per worker: improves load balancing

• **Worker**
 – Responsible for its section(s) of the graph
 – Each worker knows the vertex assignments of other workers
Input assignment

• Master assigns parts of the input to each worker
 – Data usually sits in GFS or Bigtable

• Input = set of records
 – Record = vertex data and edges
 – Assignment based on file boundaries

• Worker reads input
 – If it belongs to any of the vertices it manages, messages sent locally
 – Else worker sends messages to remote workers

• After data is loaded, all vertices are active
Computation

- Master tells each worker to perform a superstep

- Worker:
 - Iterates through vertices (one thread per partition)
 - Calls Compute() method for each active vertex
 - Delivers messages from the previous superstep
 - Outgoing messages
 - Sent asynchronously
 - Delivered before the end of the superstep

- When done
 - Worker tells master how many vertices will be active in the next superstep

- Computation done when no more active vertices in the cluster
 - Master may instruct workers to save their portion of the graph
Handling failure

• **Checkpointing**
 – Controlled by master … every N supersteps
 – Master asks a worker to checkpoint at the start of a superstep
 • Save state of partitions to persistent storage
 – Vertex values
 – Edge values
 – Incoming messages
 – Master is responsible for saving aggregator values

• **Failure detection**: master sends *ping* messages to workers
 – If worker does not receive a ping within a time period
 ⇒ Worker terminates
 – If the master does not hear from a worker
 ⇒ Master marks worker as failed

• **Restart**: when failure is detected
 – Master reassigns partitions to the current set of workers
 – **All** workers reload partition state from most recent checkpoint
Apache Giraph

- Initially created at Yahoo
- Used at LinkedIn & Facebook to analyze the social graphs of users
 - Facebook is the main contributor to Giraph
- Runs under Hadoop MapReduce framework
 - Runs as a *Map*-only job
 - Adds fault-tolerance to the master by using ZooKeeper for coordination
 - Uses Java instead of C++

== Chubby
Conclusion

Vertex-centric approach to BSP

• Computation = set of supersteps
 – Compute() called on each vertex per superstep
 – Communication between supersteps: barrier synchronization

• Hides distribution from the programmer
 – Framework creates lots of workers
 – Distributes partitions among workers
 – Distributes input
 – Handles message sending, receipt, and synchronization
 – A programmer just has to think from the viewpoint of a vertex

• Checkpoint-based fault tolerance
Spark: Generalizing MapReduce
MapReduce problems

- Not efficient when multiple passes needed
- Problems need to be converted to a series of Map & Reduce operations
- The next phase can never start until the previous has completed
- Output needs to be stored in the file system before the next step starts
- Storage involves disk writes & replication
Apache Spark Goals

• Generalize MapReduce
 – Similar shard-and-gather approach to MapReduce
 – Create multi-step pipelines based on directed acyclic graphs (DAGs) of data flows

• Create a general functional programming model
 – Transformation and action
 – In Map-Reduce, transformation = map, action = reduce
 – Support operations beyond map and reduce

• Add fast data sharing
 – In-memory caching
 – Different computation phases can use the same data if needed

• And generic data storage interfaces
 – Storage agnostic: use HDFS, Cassandra database, whatever
 – Resilient Distributed Data (RDD) sets
 • An RDD is a chunk of data that gets processed – a large collection of stuff
Spark Design: RDDs

RDD: Resilient Distributed Datasets
- Table that can be sharded across many servers
- Holds any type of data
- Immutable: you can process the RDD to create a new RDD but not modify the original

Two operations on RDDs
1. Transformations: transformation function takes RDD as input & creates a new RDD
 - Examples: map, filter, flatMap, groupByKey, reduceByKey, aggregateByKey, ...
2. Actions: evaluates an RDD and creates a value:
 - Examples: reduce, collect, count, first, take, countByKey, ...

• Shared variables
 - Broadcast Variables: define read-only data that will be cached on each system
 - Accumulators: used for counters (e.g., in MapReduce) or sums
 - Only the driver program can read the value of the accumulator.
High-level view

- **Job** = bunch of transformations & actions on RDDs
High-level view

- Cluster manager breaks the job into tasks
- Sends tasks to worker nodes where the data lives
Worker node

- One or more **executors**
 - JVM process
 - Talks with cluster manager
 - Receives **tasks**
 - JVM code (e.g., compiled Java, Clojure, Scala, JRuby, …)
 - Task = **transformation** or **action**
 - Data to be processed (RDD)
 - Cache
 - Stores results in memory
 - Key to high performance
Data & RDDs

• Data organized into RDDs
 – One RDD may be partitioned across lots of computers

• How are RDDs created?
 1. Create from any file stored in HDFS or other storage supported in Hadoop (Amazon S3, HDFS, HBase, Cassandra, etc.)
 • Created externally (e.g., event stream, text files, database)
 • Example:
 – Query a database & make query the results an RDD
 – Any Hadoop InputFormat, such as a list of files or a directory
 2. Streaming sources (via Spark Streaming)
 • Fault-tolerant stream with a sliding window
 3. Output of a Spark transformation function
 • Example, filter out data, select key-value pairs
Properties of RDDs

- **Immutable**
 - You cannot change it – only create new RDDs
 - The framework will eventually collect unused RDDs

- **Typed (table)**
 - Contain some parsable data structure – e.g., key-value set

- Created from – and thus **dependent** on other RDDs
 - Either original source data or computed from one or more other RDDs

- **Partitioned** – parts of an RDD may go to different servers
 - Function can be defined for computing each split
 - Default partitioning function = \(\text{hash(key)} \mod \text{server_count} \)

- **Ordered** (optional)
 - Elements in an RDD can be sorted
Operations on RDDs

• Two types of operations on RDDs

• **Transformations**: create new RDDs
 – Lazy: computed when needed, not immediately
 – Transformed RDD is computed when an action is run on it
 • **Work backwards**:
 – What RDDs do you need to apply to get an action?
 – What RDDs do you need to apply to get the input to this RDD?
 – RDD can be persisted into memory or disk storage

• **Actions**: create result values
 – Finalizing operations
 • *Reduce, count, grab samples, write to file*
Spark Transformations

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>map(func)</code></td>
<td>Pass each element through a function <code>func</code></td>
</tr>
<tr>
<td><code>filter(func)</code></td>
<td>Select elements of the source on which <code>func</code> returns true</td>
</tr>
<tr>
<td><code>flatMap(func)</code></td>
<td>Each input item can be mapped to 0 or more output items</td>
</tr>
<tr>
<td><code>sample(withReplacement, fraction, seed)</code></td>
<td>Sample a fraction fraction of the data, with or without replacement, using a given random number generator seed</td>
</tr>
<tr>
<td><code>union(otherdataset)</code></td>
<td>Union of the elements in the source data set and <code>otherdataset</code></td>
</tr>
<tr>
<td><code>distinct([numtasks])</code></td>
<td>The distinct elements of the source dataset</td>
</tr>
</tbody>
</table>
Spark Transformations

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>groupByKey</code>([numtasks])</td>
<td>When called on a dataset of (K, V) pairs, returns a dataset of (K, seq[V]) pairs</td>
</tr>
<tr>
<td><code>reduceByKey</code>(func, [numtasks])</td>
<td>Aggregate the values for each key using the given reduce function</td>
</tr>
<tr>
<td><code>sortByKey</code>([ascending], [numtasks])</td>
<td>Sort keys in ascending or descending order</td>
</tr>
<tr>
<td><code>join</code>(otherDataset, [numtasks])</td>
<td>Combines two datasets, (K, V) and (K, W) into (K, (V, W))</td>
</tr>
<tr>
<td><code>cogroup</code>(otherDataset, [numtasks])</td>
<td>Given (K, V) and (K, W), returns (K, Seq[V], Seq[W])</td>
</tr>
<tr>
<td><code>cartesian</code>(otherDataset)</td>
<td>For two datasets of types T and U, returns a dataset of (T, U) pairs</td>
</tr>
</tbody>
</table>
Spark Actions

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>reduce(func)</code></td>
<td>Aggregate elements of the dataset using <code>func</code>.</td>
</tr>
<tr>
<td><code>collect(func, [numtasks])</code></td>
<td>Return all elements of the dataset as an array</td>
</tr>
<tr>
<td><code>count()</code></td>
<td>Return the number of elements in the dataset</td>
</tr>
<tr>
<td><code>first()</code></td>
<td>Return the first element of the dataset</td>
</tr>
<tr>
<td><code>take(n)</code></td>
<td>Return an array with the first n elements of the dataset</td>
</tr>
<tr>
<td><code>takeSample(withReplacement, fraction, seed)</code></td>
<td>Return an array with a random sample of <code>num</code> elements of the dataset</td>
</tr>
</tbody>
</table>
Spark Actions

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>saveAsTextFile(path)</code></td>
<td>Write dataset elements as a text file</td>
</tr>
<tr>
<td><code>saveAsSequenceFile(path)</code></td>
<td>Write dataset elements as a Hadoop SequenceFile</td>
</tr>
<tr>
<td><code>countByKey()</code></td>
<td>For (K, V) RDDs, return a map of (K, Int) pairs with the count of each key</td>
</tr>
<tr>
<td><code>foreach(func)</code></td>
<td>Run <code>func</code> on each element of the dataset</td>
</tr>
</tbody>
</table>
Data Storage

• Spark does not care how source data is stored
 – RDD connector determines that
 – E.g.,
 read RDDs from tables in a Cassandra DB;
 write new RDDs to HBase tables

• RDD Fault tolerance
 – RDDs track the sequence of transformations used to create them
 – Enables recomputing of lost data
 • Go back to the previous RDD and apply the transforms again
Example: processing logs

- **Transform** (creates new RDDs)
 - Extract error message from a log
 - Parse out the source of error

- **Actions**: count mysql & php errors

```scala
// base RDD
val lines = sc.textFile("hdfs://...")

// transformed RDDs
val errors = lines.filter(_.startsWith("ERROR"))
val messages = errors.map(_.split("\t")).map(r => r(1))
messages.cache()

// action 1
messages.filter(_.contains("mysql")).count()

// action 2
messages.filter(_.contains("php")).count()
```
Spark Ecosystem

• **Spark Streaming**: process real-time streaming data
 – Micro-batch style of processing
 – Uses DStream: series of RDDs

• **Spark SQL**: access Spark data over JDBC API
 – Use SQL-like queries on Spark data

• **Spark Mlib**: machine learning library
 – Utilities for classification, regression, clustering, filtering, ...

• **Spark GraphX**: graph computation
 – Adds Pregel API to Spark
 – Extends RDD by introducing a directed multi-graph with properties attached to each vertex & edge.
 – Set of operators to create subgraphs, join vertices, aggregate messages, ...
Spark Streaming

- Map-Reduce & Pregel expect static data
- **Spark Streaming** enables processing live data streams
 - Same programming operations
 - Input data is chunked into batches
 - Programmer specifies time interval
Spark Streaming: DStreams

- **Discretized Stream = DStream**
 - Continuous stream of data (from source or a transformation)
 - Appears as a continuous series of RDDs, each for a time interval

 ![Diagram of DStream](Image)

 - Each operation on a DStream translates to operations on the RDDs

 ![Diagram of RDD operations](Image)

 - Join operations allow combining multiple streams
Spark Summary

• Supports streaming
 – Handle continuous data streams via Spark Streaming

• Fast
 – Often up to 10x faster on disk and 100x faster in memory than MapReduce
 – General execution graph model
 • No need to have "useless" phases just to fit into the model
 – In-memory storage for RDDs

• Fault tolerant: RDDs can be regenerated
 – You know what the input data set was, what transformations were applied to it, and what output it creates
The end