Can we make MapReduce easier?

Apache Pig

• Why?
 – Make it easy to use MapReduce via scripting instead of Java
 – Make it easy to use multiple MapReduce stages
 – Built-in common operations for join, group, filter, etc.

• How to use?
 – Use Grunt – the pig shell
 – Submit a script directly to pig
 – Use the PigServer Java class
 – PigPen – Eclipse plugin
 – Pig compiles to several Hadoop MapReduce jobs

Pig: Loading Data

Load/store relations in the following formats:
 • PigStorage: field-delimited text
 • BinStorage: binary files
 • BinaryStorage: single-field tuples with a value of bytearray
 • TextLoader: plain-text
 • PigDump: stores using toString() on tuples, one per line

Example

```
log = LOAD 'test.log' AS (user, timestamp, query);
gropl = GROUP log BY user;
undl = FOREACH gropl GENERATE group, COUNT(log);
filtrl = FILTER undl BY cnt > 50;
srtl = ORDER filtrl BY cnt;
STORE srtl INTO 'output';
```

• Each statement defines a new dataset
 – Datasets can be given aliases to be used later
• FOREACH iterates over the members of a "bag"
 – Input is gropl, list of log entries grouped by user
 – Output is group, COUNT(log): list of (user, count)
• FILTER applies conditional filtering
• ORDER applies sorting
See pig.apache.org for full documentation

MapReduce isn’t always the answer
- MapReduce works well for certain problems
 - Framework provides
 - Automatic parallelization
 - Automatic job distribution
- For others:
 - May require many iterations
 - Data locality usually not preserved between Map and Reduce
 - Lots of communication between map and reduce workers

Bulk Synchronous Parallel (BSP)
Computing model for parallel computation
- Series of supersteps
 1. Concurrent computation
 2. Communication
 3. Barrier synchronization

Series of supersteps
- Processes (workers) are randomly assigned to processors
- Each process uses only local data
- Each computation is asynchronous of other concurrent computation
- Computation time may vary

- Messaging is restricted to the end of a computation superstep
- Each worker sends a message to 0 or more workers
- These messages are inputs for the next superstep
Bulk Synchronous Parallel (BSP)

- **Series of supersteps**
 1. Concurrent computation
 2. Communication
 3. Barrier synchronization

 - The next superstep does not begin until all messages have been received.
 - Barriers ensure no deadlock; no circular dependency can be created.
 - Provide an opportunity to checkpoint results for fault tolerance.
 - If failure, restart computation from last superstep.

BSP Implementation: Apache Hama

- **Hama**: BSP framework on top of HDFS
 - Provides automatic parallelization & distribution
 - Uses Hadoop RPC
 - Data is serialized with Google Protocol Buffers
 - Zookeeper for coordination (Apache version of Google’s Chubby)
 - Handles notifications for Barrier Sync

- **Good for applications with data locality**
 - Matrices and graphs
 - Algorithms that require a lot of iterations

Hama programming (high-level)

- **Pre-processing**
 - Define the number of peers for the job
 - Split initial inputs for each of the peers to run their supersteps
 - Framework assigns a unique ID to each worker (peer)

- **Superstep**: the worker function is a superstep
 - `getCurrentMessage()` — input messages from previous superstep
 - Compute — your code
 - `send(peer, msg)` — send messages to a peer
 - `sync()` — synchronize with other peers (barrier)

- **File I/O**
 - Key/value model used by Hadoop MapReduce & HBase
 - `readNext(key, value)`
 - `write(key, value)`

For more information

- Architecture, examples, API
- Take a look at:
 - Apache Hama project page
 - http://hama.apache.org
 - Hama BSP tutorial
 - Apache Hama Programming document

Graph computing

- **Graphs are common in computing**
 - Social links
 - Friends
 - Academic citations
 - Music
 - Movies
 - Web pages
 - Network connectivity
 - Roads
 - Disease outbreaks
Processing graphs on a large scale is hard

- Computation with graphs
 - Poor locality of memory access
 - Little work per vertex
- Distribution across machines
 - Communication complexity
 - Failure concerns
- Solutions
 - Application-specific, custom solutions
 - MapReduce or databases
 - Single-computer libraries: limits scale
 - Parallel libraries: do not address fault tolerance

But require many iterations (and a lot of data movement)

- Single-computer libraries: limits scale
- Parallel libraries: do not address fault tolerance
- BSP: close but too general

Pregel: a vertex-centric BSP

Input: directed graph
- A vertex is an object
 - Each vertex uniquely identified with a name
 - Each vertex has a modifiable value
 - Directed edges: links to other objects
 - Associated with source vertex
 - Each edge has a modifiable value
 - Each edge has a target vertex identifier

Pregel: computation

Computation: series of supersteps
- Same user-defined function runs on each vertex
- Receives messages sent from the previous superstep
- May modify the state of the vertex or its outgoing edges
- Sends messages that will be received in the next superstep
 - Typically to outgoing edges
 - But can be sent to any known vertex
- May modify the graph topology
- Each superstep ends with a barrier (synchronization point)

Pregel: termination

Pregel terminates when every vertex votes to halt
- Initially, every vertex is in an active state
 - Active vertices compute during a superstep
 - Each vertex may choose to deactivate itself by voting to halt
 - The vertex has no more work to do
 - Will not be executed by Pregel
 - UNLESS the vertex receives a message
 - Then it is reactivated
 - Will stay active until it votes to halt again
 - Algorithm terminates when all vertices are inactive and there are no messages in transit

Pregel: output

- Output is the set of values output by the vertices
 - Often a directed graph
 - May be non-isomorphic to original since edges & vertices can be added or deleted
 - Or may be summary data

Examples of graph computations

- Shortest path to a node
 - Each iteration, a node sends the shortest distance received to all neighbors
- Cluster identification
 - Each iteration: get info about clusters from neighbors
 - Add myself
 - Pass useful clusters to neighbors (e.g., within a certain depth or size)
 - May combine related vertices
 - Output is a smaller set of disconnected vertices representing clusters of interest
- Graph mining
 - Traverse a graph and accumulate global statistics
- Page rank
 - Each iteration: update web page ranks based on messages from incoming links.
Simple example: find the maximum value

- Each vertex contains a value
- In the first superstep:
 - A vertex sends its value to its neighbors
- In each successive superstep:
 - If a vertex learned of a larger value from its incoming messages, it sends it to its neighbors
 - Otherwise, it votes to halt
- Eventually, all vertices get the largest value
- When no vertices change in a superstep, the algorithm terminates

Semi-pseudocode:

```java
class MaxValueVertex
    : public Vertex<int, void, int>
{
    void Compute(MessageIterator *msgs) {
        int maxv = GetValue();
        for (; !msgs->Done(); msgs->Next())
            maxv = max(msgs.Value(), maxv);
        if (maxv > GetValue()) || (step == 0)) {
            *MutableValue() = maxv;
            OutEdgeIterator out = GetOutEdgeIterator();
            for (; !out.Done(); out.Next())
                sendMessageTo(out.Target(), maxv);
        } else
            VoteToHalt();
    }
};
```

Locality

- Vertices and edges remain on the machine that does the computation
- To run the same algorithm in MapReduce
 - Requires chaining multiple MapReduce operations
 - Entire graph state must be passed from Map to Reduce
 ... and again as input to the next Map
Pregel API: Basic operations

- A user subclasses a Vertex class
- Methods
 - `Compute(MessageIterator*)`: Executed per active vertex in each superstep
 - `MessageIterator`: Identifies incoming messages from previous supersteps
 - `GetValue()`: Get the current value of the vertex
 - `MutableValue()`: Set the value of the vertex
 - `GetOutEdgeIterator()`: Get a list of outgoing edges
 - `Target()`: Identify target vertex on an edge
 - `GetValue()`: Get the value of the edge
 - `MutableValue()`: Set the value of the edge
 - `SendMessageTo()`: Send a message to a vertex

Combines

- Each message has an overhead — let's reduce # of messages
- Many vertices are processed per worker (multi-threaded)
- Pregel can combine messages targeted to one vertex into one message
- Combiners are application specific
 - Programmer subclasses a Combiner class and overrides Combine() method
 - No guarantee on which messages may be combined

Aggregators

- Handle global data
- A vertex can provide a value to an aggregator during a superstep
 - Aggregator combines received values to one value
 - Value is available to all vertices in the next superstep
- User subclasses an Aggregator class
- Examples
 - Keep track of total edges in a graph
 - Generate histograms of graph statistics
 - Global flags: execute until some global condition is satisfied
 - Election: find the minimum or maximum vertex

Topology modification

- Examples
 - If we're computing a spanning tree: remove unneeded edges
 - If we're clustering: combine vertices into one vertex
 - Add/remove edges/vertices
 - Modifications visible in the next superstep

Execution environment

- Many copies of the program are started on a cluster of machines
 - One copy becomes the master
 - Will not be assigned a portion of the graph
 - Responsible for coordination
 - Cluster's name server is `chubby`
 - Master registers itself with the name service
 - Workers contact the name service to find the master
Partition assignment

- **Master**
 - Determines # partitions in graph
 - One or more partitions assigned to each worker
 - Partition = set of vertices
 - Default: for N partitions
 \[\text{hash(vertex ID)} \mod N \Rightarrow \text{worker} \]
 - May deviate: e.g., place vertices representing the same web site in one partition
 - More than 1 partition per worker: improves load balancing

- **Worker**
 - Responsible for its section(s) of the graph
 - Each worker knows the vertex assignments of other workers

Input assignment

- **Master** assigns parts of the input to each worker
 - Data usually sits in GFS or Bigtable
- **Input** = set of records
 - Record = vertex data and edges
 - Assignment based on file boundaries

- **Worker**
 - Reads input
 - If it belongs to any of the vertices it manages, messages sent locally
 - Else worker sends messages to remote workers
 - After data is loaded, all vertices are active

Computation

- **Master** tells each worker to perform a superstep
- **Worker**:
 - Iterates through vertices (one thread per partition)
 - Calls `Compute()` method for each active vertex
 - Delivers messages from the previous superstep
 - Outgoing messages
 - Sent asynchronously
 - Delivered before the end of the superstep
 - When done
 - Worker tells master how many vertices will be active in the next superstep
 - Computation done when no more active vertices in the cluster
 - Master may instruct workers to save their portion of the graph

Handling failure

- **Checkpointing**
 - Controlled by master … every N supersteps
 - Master asks a worker to checkpoint at the start of a superstep
 - Save state of partitions to persistent storage
 - Vertex values
 - Edge values
 - Incoming messages
 - Master is responsible for saving aggregator values

- **Failure detection**: master sends `ping` messages to workers
 - If worker does not receive a ping within a time period
 - Worker terminates
 - If the master does not hear from a worker
 - Master marks worker as failed

- **Restart**: when failure is detected
 - Master reassigns partitions to the current set of workers
 - All workers reload partition state from most recent checkpoint

Pregel outside of Google

Apache Giraph
- Initially created at Yahoo
- Used at LinkedIn & Facebook to analyze the social graphs of users
- Facebook is the main contributor to Giraph
- Runs under Hadoop MapReduce framework
- Runs as a Map-only job
- Adds fault-tolerance to the master by using `Zookeeper` for coordination
- Uses Java instead of C++

Chubby

Conclusion

- **Vertex-centric approach to BSP**
 - Computation = set of supersteps
 - Computer(s) called on each vertex per superstep
 - Communication between supersteps: barrier synchronization
 - Hides distribution from the programmer
 - Framework creates lots of workers
 - Distributes partitions among workers
 - Distributes input
 - Handles message sending, receipt, and synchronization
 - A programmer just has to think from the viewpoint of a vertex

- **Checkpoint-based fault tolerance**
Spark: Generalizing MapReduce

Apache Spark Goals

- Generalize MapReduce
 - Similar shard-and-gather approach to MapReduce
 - Create multi-step pipelines based on directed acyclic graphs (DAGs) of data flows
- Create a general functional programming model
 - Transformation and action
 - In Map-Reduce, transformation = map, action = reduce
 - Support operations beyond map and reduce
- Add fast data sharing
 - In-memory caching
 - Different computation phases can use the same data if needed
- And generic data storage interfaces
 - Storage agnostic: use HDFS, Cassandra database, whatever
 - Resilient Distributed Data (RDD) sets
 - An RDD is a chunk of data that gets processed – a large collection of stuff

Spark Design: RDDs

RDD: Resilient Distributed Datasets
- Table that can be shared across many servers
- Holds any type of data
- Immutable: you can process the RDD to create a new RDD but not modify the original

Two operations on RDDs
1. Transformations: transformation function takes RDD as input & creates a new RDD
 - Examples: map, filter, groupByKey, reduceByKey, aggregateByKey, ...
2. Actions: evaluates an RDD and creates a value:
 - Examples: reduce, collect, count, first, take, countByKey, ...

- Shared variables
 - Broadcast Variables: define read-only data that will be cached on each system
 - Accumulators: used for counters (e.g., in MapReduce) or sums
 - Only the driver program can read the value of the accumulator.

High-level view

- Job = bunch of transformations & actions on RDDs
- Cluster manager breaks the job into tasks
- Sends tasks to worker nodes where the data lives
Spark Transformations

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>map(func)</td>
<td>Pass each element through a function func</td>
</tr>
<tr>
<td>filter(func)</td>
<td>Select elements of the source on which func returns true</td>
</tr>
<tr>
<td>flatmap(func)</td>
<td>Each input item can be mapped to 0 or more output items</td>
</tr>
<tr>
<td>sample(withReplacement, fraction, seed)</td>
<td>Sample a fraction fraction of the data, with or without replacement, using a given random number generator seed</td>
</tr>
<tr>
<td>union(otherDataset)</td>
<td>Union of the elements in the source data set and otherDataset</td>
</tr>
<tr>
<td>distinct(numtasks)</td>
<td>The distinct elements of the source dataset</td>
</tr>
</tbody>
</table>

Properties of RDDs

- **Immutable**
 - You cannot change it – only create new RDDs
 - The framework will eventually collect unused RDDs
- **Typed (table)**
 - Contain some parsable data structure – e.g., key-value set
- **Created from**
 - Either original source data or computed from one or more other RDDs
- **Partitioned**
 - Parts of an RDD may go to different servers
 - Function can be defined for computing each split
 - Default partitioning function = hash(key) mod server_count
- **Ordered (optional)**
 - Elements in an RDD can be sorted

Operations on RDDs

- **Two types of operations on RDDs**
 - **Transformations**: create new RDDs
 - Lazy: computed when needed, not immediately
 - Transformed RDD is computed when an action is run on it
 - Work backwards:
 - What RDDs do you need to apply to get an action?
 - What RDDs do you need to apply to get the input to this RDD?
 - RDD can be persisted into memory or disk storage
 - **Actions**: create result values
 - Finalizing operations
 - Reduce, count, grab samples, write to file

Data & RDDs

- **Data organized into RDDs**
 - One RDD may be partitioned across lots of computers
- **How are RDDs created?**
 1. Create from any file stored in HDFS or other storage supported in Hadoop (Amazon S3, HDFS, HBase, Cassandra, etc.)
 2. Created externally (e.g., event stream, text files, database)
 3. Example:
 - Query a database & make query the results an RDD
 - Any Hadoop InputFormat, such as a list of files or a directory
 2. Streaming sources (via Spark Streaming)
 - Fault-tolerant stream with a sliding window
 3. Output of a Spark transformation function
 - Example, filter out data, select key-value pairs

Spark Transformations

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>groupByKey(numtasks)</td>
<td>When called on a dataset of (K, V) pairs, returns a dataset of (K, seq(V))</td>
</tr>
<tr>
<td>reduceByKey(func, numtasks)</td>
<td>Aggregate the values for each key using the given reduce function</td>
</tr>
<tr>
<td>sortByKey(ascending), numtasks</td>
<td>Sort keys in ascending or descending order</td>
</tr>
<tr>
<td>join(otherDataset, numtasks)</td>
<td>Combines two datasets, (K, V) and (K, W) into K, (V, W))</td>
</tr>
<tr>
<td>cogroup(otherDataset, numtasks)</td>
<td>Given (K, V) and (K, W), returns (K, Seq(V), Seq(W))</td>
</tr>
<tr>
<td>cartesian(otherDataset)</td>
<td>For two datasets of types T and U, returns a dataset of (T, U) pairs</td>
</tr>
</tbody>
</table>
Spark Actions

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>reduce(func)</code></td>
<td>Aggregate elements of the dataset using <code>func</code>.</td>
</tr>
<tr>
<td><code>collect()</code></td>
<td>Return all elements of the dataset as an array.</td>
</tr>
<tr>
<td><code>count()</code></td>
<td>Return the number of elements in the dataset.</td>
</tr>
<tr>
<td><code>first()</code></td>
<td>Return the first element of the dataset.</td>
</tr>
<tr>
<td><code>take(n)</code></td>
<td>Return an array with the first <code>n</code> elements of the dataset.</td>
</tr>
<tr>
<td><code>takeSample()</code></td>
<td>Return an array with a random sample of <code>num</code> elements of the dataset.</td>
</tr>
<tr>
<td><code>saveAsTextFile(path)</code></td>
<td>Write dataset elements as a text file</td>
</tr>
<tr>
<td><code>saveAsSequenceFile(path)</code></td>
<td>Write dataset elements as a Hadoop SequenceFile</td>
</tr>
<tr>
<td><code>countByKey()</code></td>
<td>For (K, V) RDDs, return a map of (K, Int) pairs with the count of each key</td>
</tr>
<tr>
<td><code>foreach(func)</code></td>
<td>Run <code>func</code> on each element of the dataset</td>
</tr>
</tbody>
</table>

Data Storage

- Spark does not care how source data is stored
 - RDD connector determines that
 - E.g., read RDDs from tables in a Cassandra DB, write new RDDs to HBase tables
- RDD Fault tolerance
 - RDDs track the sequence of transformations used to create them
 - Enables recomputing of lost data
 - Go back to the previous RDD and apply the transforms again

Example: processing logs

- Transform (creates new RDDs)
 - Extract error message from a log
 - Parse out the source of error
- Actions: count mysql & php errors

```scala
// base RDD
val lines = sc.textFile("hdfs://...")
// transformed RDDs
val errors = lines.filter(_.startsWith("ERROR"))
val messages = errors.map(_.split("\t").map(r => r(1)))
messages.cache()

// action 1
messages.filter(_.contains("mysql")).count()
// action 2
messages.filter(_.contains("php")).count()
```

Spark Ecosystem

- **Spark Streaming**: process real-time streaming data
 - Micro-batch style of processing
 - Uses DStream: series of RDDs
- **Spark SQL**: access Spark data over JDBC API
 - Use SQL-like queries on Spark data
- **Spark Mlib**: machine learning library
 - Utilities for classification, regression, clustering, filtering, ...
- **Spark GraphX**: graph computation
 - Adds Pregel API to Spark
 - Extends RDD by introducing a directed multi-graph with properties attached to each vertex & edge.
 - Set of operators to create subgraphs, join vertices, aggregate messages, ...

Spark Streaming

- Map-Reduce & Pregel expect static data
- Spark Streaming enables processing live data streams
 - Same programming operations
 - Input data is chunked into batches
 - Programmer specifies time interval
Spark Streaming: DStreams

- **Discretized Stream = DStream**
 - Continuous stream of data (from source or a transformation)
 - Appears as a continuous series of RDDs, each for a time interval

 - Each operation on a DStream translates to operations on the RDDs

 - Join operations allow combining multiple streams

Spark Summary

- **Supports streaming**
 - Handle continuous data streams via Spark Streaming

- **Fast**
 - Often up to 10x faster on disk and 100x faster in memory than MapReduce
 - General execution graph model
 - No need to have "useless" phases just to fit into the model
 - In-memory storage for RDDs

- **Fault tolerant: RDDs can be regenerated**
 - You know what the input data set was, what transformations were applied to it, and what output it creates