Distributed Systems

20. Spanner

Paul Krzyzanowski
Rutgers University
Fall 2016
Spanner

Take Bigtable and add:
- Familiar SQL-like multi-table, row-column data model
 - One primary key per table
- Synchronous replication (Bigtable was eventually consistent)
- Transactions across arbitrary rows

Spanner
- Globally distributed multi-version database
- ACID (general purpose transactions)
- Schematized tables (Semi-relational)
 - Built on top of a key-value based implementation
 - SQL-like queries
- Lock-free distributed read transactions

Goal: make it easy for programmers to use
Working with eventual consistency & merging is hard ⇒ don't make developers deal with it
Data Storage

- Tables sharded across rows into **tablets** (like bigtable)
- Tablets stored in **spanservers**
- 1000s of spanservers per zone
 - Collection of servers – can be run independently
- **Zonemaster** allocates data to spanservers

- **Location proxies** – Used by clients to locate spanservers that hold the data they need
- **Universemaster** – status of all zones
- **Placement driver** – transfers data between zones

Zone 1
- Zonemaster
- Location Proxy
- Spanserver

Zone 2
- Zonemaster
- Location Proxy
- Spanserver

Zone N
- Zonemaster
- Location Proxy
- Spanserver
Data Storage

- **Universe** holds 1 or more databases
 - **Database** holds 1 or more tables
 - **Table** = arbitrary number of rows and columns
 - Table storage may be interleaved
 - All data in a table has version information (timestamp)

- **Shards (tablets) are replicated**
 - Synchronous replication via Paxos

- **Transactions across shards use 2-phase commit**

- **Directory = set of contiguous keys**
 - Unit of data allocation
 - Granularity for data movement between Paxos groups
 - Done in background
Transactions

• ACID properties
• Transactions are serialized: strict 2-phase locking used

1. Acquire all locks
 – do work –

2. Get a commit timestamp

3. Log the commit timestamp via Paxos to majority of replicas

4. Do the commit
 – Apply changes locally & to replicas

5. Release locks
2-Phase locking can be slow

We can use *read locks* and *write locks*

But

– *read locks* block behind *write locks*
– *write locks* block behind *read locks*

Multiversion concurrency to the rescue!

– Take a snapshot of the database for transactions up to a point in time
– You can read old data without getting a lock
 • Great for long-running reads (e.g., searches)
– Because *you are reading before a specific point in time*
 • Results are consistent

We need *commit timestamps* that will enable meaningful snapshots
Getting good commit timestamps

• **Vector clocks work**
 – Pass along current server’s notion of time with each message
 – Receiver updates its concept of time (if necessary)

• **But not feasible in large systems**
 – Pain in HTML (have to embed vector timestamp in HTTP transaction)
 – Doesn’t work if you introduce things like phone call logs

• **Spanner: use physical timestamps**
 – If T_1 commits before T_2, T_1 must get a smaller timestamp
 – Commit order matches global wall-time order
TrueTime

• Remember: we can’t know global time across servers!

• Global wall-clock time = time + interval of uncertainty
 – TT.now().earliest = time guaranteed to be <= current time
 – TT.now().latest = time guaranteed to be >= current time

• Each data center has a GPS receiver & atomic clock

• Atomic clock synchronized with GPS receivers
 – Validates GPS receivers

• Spanservers periodically synchronize with time servers
 – Know uncertainty based on interval
 – Synchronize ~ every 30 seconds: clock uncertainty < 10 ms
Commit Wait

We don’t know the exact time
 – But we can wait out the uncertainty

1. Acquire all locks
 – do work –
2. Get a commit timestamp: \(t = \text{TT.now().latest} \)
3. **Commit wait**: wait until \(\text{TT.now().earliest} > t \)
4. Commit
5. Release locks

average worst-case wait is \(~10\) ms
1. Acquire all locks
 – *do work* –
2. Get a commit timestamp: $t = \text{TT.now().latest}$
3. (a) Start consensus for replication
 (b) *Commit wait* (in parallel)
4. Commit
5. Release locks
Integrate commit wait with 2-phase commit

• 2-phase commit used across shards

1. Acquire all locks
 – *do work* –

2. 2PC coordinator gets a commit timestamp: \(t = \text{TT.now().latest} \)

3. Use Paxos protocol to commit
 – timestamp included in the Paxos proposal
 – timestamp conveyed to all participants

4. Commit

5. Release locks
Spanner Summary

- Semi-relational database of tables
 - Supports externally consistent distributed transactions
 - No need for users to try deal with eventual consistency
- Multi-version database
- Synchronous replication
- Scales to millions of machines in hundreds of data centers
- SQL-based query language

- Used in F1, the system behind Google’s Adwords platform
- May be used in Gmail & Google search
Conclusion

- ACID semantics not sacrificed
 - Life gets easy for programmers
 - Programmers don’t need to deal with eventual consistency

- Wide-area distributed transactions built-in
 - Bigtable did not support distributed transactions
 - Programmers had to write their own
 - Easier if programmers don’t have to get 2PC right

- Clock uncertainty is known to programmers
 - You can wait it out
The end