Distributed Systems

20. Other parallel frameworks

Paul Krzyzanowski
Rutgers University
Fall 2017
Can we make MapReduce easier?
Apache Pig

- **Why?**
 - Make it easy to use MapReduce via scripting instead of Java
 - Make it easy to use multiple MapReduce stages
 - Built-in common operations for join, group, filter, etc.

- **How to use?**
 - Use Grunt – the pig shell
 - Submit a script directly to pig
 - Use the PigServer Java class
 - PigPen – Eclipse plugin

- Pig compiles to several Hadoop MapReduce jobs
Apache Pig

Count Job (in Pig Latin)

A = LOAD 'myfile' AS (x, y, z);
B = FILTER A by x>0;
C = GROUP B by x;
D = FOREACH A GENERATE x, COUNT(B);
STORE D into 'output';

Pig Framework
- Parse
- Check
- Optimize
- Plan Execution
- Submit jar to Hadoop
- Monitor progress

Hadoop Execution
- Map: Filter
- Reduce: Counter
Pig: Loading Data

Load/store relations in the following formats:

- **PigStorage**: field-delimited text
- **BinStorage**: binary files
- **BinaryStorage**: single-field tuples with a value of `bytearray`
- **TextLoader**: plain-text
- **PigDump**: stores using `toString()` on tuples, one per line
Example

Each statement defines a new dataset
- Datasets can be given aliases to be used later

FOREACH iterates over the members of a "bag"
- Input is grpd: list of log entries grouped by user
- Output is group, COUNT(log): list of {user, count}

FILTER applies conditional filtering

ORDER applies sorting
See pig.apache.org for full documentation
MapReduce isn’t always the answer

• MapReduce works well for certain problems
 – Framework provides
 • Automatic parallelization
 • Automatic job distribution

• For others:
 – May require many iterations
 – Data locality usually not preserved between Map and Reduce
 • Lots of communication between map and reduce workers
Bulk Synchronous Parallel (BSP)

- Computing model for parallel computation
- Series of **supersteps**
 1. Concurrent computation
 2. Communication
 3. Barrier synchronization

```
Initial data
Compute
Compute
Compute
```

Superstep 0

```
Input msgs
Compute
Compute
Compute
Input msgs
Input msgs
Input msgs
```

Superstep 1

```
Input msgs
Input msgs
Input msgs
Input msgs
```
Bulk Synchronous Parallel (BSP)
Bulk Synchronous Parallel (BSP)

- Series of supersteps
 1. Concurrent computation
 2. Communication
 3. Barrier synchronization

- Processes (workers) are randomly assigned to processors
- Each process uses only local data
- Each computation is asynchronous of other concurrent computation
- Computation time may vary

Superstep 0

- Initial data
 - Compute
 - Compute
 - Compute
 - Compute

Superstep 1

- Input msgs
 - Compute
 - Compute
 - Compute
 - Compute

Initial data

- Processes (workers) are randomly assigned to processors
- Each process uses only local data
- Each computation is asynchronous of other concurrent computation
- Computation time may vary
Bulk Synchronous Parallel (BSP)

- Series of supersteps
 1. Concurrent computation
 2. Communication
 3. Barrier synchronization

- Messaging is restricted to the end of a computation superstep
- Each worker sends a message to 0 or more workers
- These messages are inputs for the next superstep
Bulk Synchronous Parallel (BSP)

- Series of supersteps
 1. Concurrent computation
 2. Communication
 3. Barrier synchronization

- The next superstep does not begin until all messages have been received
- Barriers ensure no deadlock: no circular dependency can be created
- Provide an opportunity to checkpoint results for fault tolerance
 - If failure, restart computation from last superstep
BSP Implementation: Apache Hama

• Hama: BSP framework on top of HDFS
 – Provides automatic parallelization & distribution
 – Uses Hadoop RPC
 • Data is serialized with Google Protocol Buffers
 – Zookeeper for coordination (Apache version of Google’s Chubby)
 • Handles notifications for Barrier Sync

• Good for applications with data locality
 – Matrices and graphs
 – Algorithms that require a lot of iterations

hama.apache.org
Hama programming (high-level)

• Pre-processing
 – Define the number of peers for the job
 – Split initial inputs for each of the peers to run their supersteps
 – Framework assigns a unique ID to each worker (peer)

• Superstep: the worker function is a superstep
 – `getCurrentMessage()` – input messages from previous superstep
 – Compute – your code
 – `send(peer, msg)` – send messages to a peer
 – `sync()` – synchronize with other peers (barrier)

• File I/O
 – Key/value model used by Hadoop MapReduce & HBase
 – `readNext(key, value)`
 – `write(key, value)`
For more information

• Architecture, examples, API

• Take a look at:
 – Apache Hama project page
 • http://hama.apache.org
 – Hama BSP tutorial
 • https://hama.apache.org/hama_bsp_tutorial.html
 – Apache Hama Programming document
 • http://bit.ly/1aiFbXS
Graph computing
Graphs are common in computing

- Social links
 - Friends
 - Academic citations
 - Music
 - Movies

- Web pages

- Network connectivity

- Roads

- Disease outbreaks
Processing graphs on a large scale is hard

• Computation with graphs
 – Poor locality of memory access
 – Little work per vertex

• Distribution across machines
 – Communication complexity
 – Failure concerns

• Solutions
 – Application-specific, custom solutions
 – MapReduce or databases
 • But require many iterations (and a lot of data movement)
 – Single-computer libraries: limits scale
 – Parallel libraries: do not address fault tolerance
 – BSP: close but too general
Pregel: a vertex-centric BSP

Input: directed graph

- A vertex is an object
 - Each vertex uniquely identified with a name
 - Each vertex has a modifiable value
- Directed edges: links to other objects
 - Associated with source vertex
 - Each edge has a modifiable value
 - Each edge has a target vertex identifier

http://googleresearch.blogspot.com/2009/06/large-scale-graph-computing-at-google.html
Pregel: computation

Computation: series of supersteps
- Same user-defined function runs on each vertex
 - Receives messages sent from the previous superstep
 - May modify the state of the vertex or of its outgoing edges
 - Sends messages that will be received in the next superstep
 - Typically to outgoing edges
 - But can be sent to any known vertex
 - May modify the graph topology

- Each superstep ends with a barrier (synchronization point)
Pregel: termination

Pregel terminates when every vertex votes to halt

- Initially, every vertex is in an *active* state
 - Active vertices compute during a superstep
- Each vertex may choose to deactivate itself by **voting to halt**
 - The vertex has no more work to do
 - Will not be executed by Pregel
 - **UNLESS** the vertex receives a message
 - Then it is reactivated
 - Will stay active until it votes to halt again
- Algorithm terminates when all vertices are inactive and there are no messages in transit
Pregel: output

• Output is the set of values output by the vertices

• Often a directed graph
 – May be non-isomorphic to original since edges & vertices can be added or deleted

 ... Or summary data
Examples of graph computations

- **Shortest path to a node**
 - Each iteration, a node sends the shortest distance received to all neighbors

- **Cluster identification**
 - Each iteration: get info about clusters from neighbors.
 - Add myself
 - Pass useful clusters to neighbors (e.g., within a certain depth or size)
 - May combine related vertices
 - Output is a smaller set of disconnected vertices representing clusters of interest

- **Graph mining**
 - Traverse a graph and accumulate global statistics

- **Page rank**
 - Each iteration: update web page ranks based on messages from incoming links.
Simple example: find the maximum value

- Each vertex contains a value
- In the first superstep:
 - A vertex sends its value to its neighbors
- In each successive superstep:
 - If a vertex learned of a larger value from its incoming messages, it sends it to its neighbors
 - Otherwise, it votes to halt
- Eventually, all vertices get the largest value
- When no vertices change in a superstep, the algorithm terminates
Simple example: find the maximum value

Semi-pseudocode:

```java
class MaxValueVertex : public Vertex<int, void, int> {
    void Compute(MessageIterator *msgs) {
        int maxv = GetValue();
        for (; !msgs->Done(); msgs->Next())
            maxv = max(msgs.Value(), maxv);

        if (maxv > GetValue() || (step == 0)) {
            *MutableValue() = maxv;
            OutEdgeIterator out = GetOutEdgeIterator();
            for (; !out.Done(); out.Next())
                sendMessageTo(out.Target(), maxv);
        } else
            VoteToHalt();
    }
};
```
Simple example: find the maximum value

Superstep 0: Each vertex propagates its own value to connected vertices

Superstep 1: V_0 updates its value: $6 > 3$
V_3 updates its value: $6 > 1$
V_1 and V_2 do not update so vote to halt
Simple example: find the maximum value

Superstep 0

Inactive vertex
V_0

Active vertex
V_1

V_2

V_3

Superstep 1

Superstep 2

Superstep 2: V_1 receives a message – **becomes active**
V_3 updates its value: 6 > 2
V_1, V_2, and V_3 do not update so vote to halt

Active vertex

Inactive vertex
Simple example: find the maximum value

Superstep 2

Superstep 3

Superstep 3: V_1 receives a message – becomes active
V_3 receives a message – becomes active
No vertices update their value – all vote to halt

Done!
Summary: find the maximum value

V₀ V₁ V₂ V₃

Superstep 0

3 → 6 → 2 → 1

Superstep 1

6 → 6 → 2 → 6

Superstep 2

6 → 6 → 6 → 6

Superstep 3

6 → 6 → 6 → 6

Active vertex Inactive vertex
Locality

- Vertices and edges remain on the machine that does the computation

- To run the same algorithm in MapReduce
 - Requires chaining multiple MapReduce operations
 - Entire graph state must be passed from Map to Reduce
 … and again as input to the next Map
Pregel API: Basic operations

• A user subclasses a Vertex class

• Methods
 – **Compute**(MessageIterator*): Executed per active vertex in each superstep
 • MessageIterator identifies incoming messages from previous supersteps
 – **GetValue**(): Get the current value of the vertex
 – **MutableValue**(): Set the value of the vertex
 – **GetOutEdgeIterator**(): Get a list of outgoing edges
 • .Target(): identify target vertex on an edge
 • .GetValue(): get the value of the edge
 • .MutableValue(): set the value of the edge
 – **SendMessageTo**(): send a message to a vertex
 • Any number of messages can be sent
 • Ordering among messages is not guaranteed
 • A message can be sent to *any* vertex (but our vertex needs to have its ID)
Combiners

• Each message has an overhead – let’s reduce # of messages
 – Many vertices are processed per worker (multi-threaded)
 – Pregel can combine messages targeted to one vertex into one message

• Combiners are application specific
 – Programmer subclasses a Combiner class and overrides Combine() method

• No guarantee on which messages may be combined
Aggregators

• Handle global data
• A vertex can provide a value to an aggregator during a superstep
 – Aggregator combines received values to one value
 – Value is available to all vertices in the next superstep
• User subclasses an Aggregator class
• Examples
 – Keep track of total edges in a graph
 – Generate histograms of graph statistics
 – Global flags: execute until some global condition is satisfied
 – Election: find the minimum or maximum vertex
Topology modification

- Examples
 - If we’re computing a spanning tree: remove unneeded edges
 - If we’re clustering: combine vertices into one vertex

- Add/remove edges/vertices

- Modifications visible in the next superstep
Pregel Design
Execution environment

• Many copies of the program are started on a cluster of machines

• One copy becomes the **master**
 – Will not be assigned a portion of the graph
 – Responsible for coordination

• Cluster’s name server = **chubby**
 – Master registers itself with the name service
 – Workers contact the name service to find the master
Partition assignment

• Master determines # partitions in graph
• One or more partitions assigned to each worker
 – Partition = set of vertices
 – Default: for N partitions

\[
\text{hash(vertex ID)} \mod N \Rightarrow \text{worker}
\]

May deviate: e.g., place vertices representing the same web site in one partition

– More than 1 partition per worker: improves load balancing

• Worker
 – Responsible for its section(s) of the graph
 – Each worker knows the vertex assignments of other workers
Input assignment

- Master assigns parts of the input to each worker
 - Data usually sits in GFS or Bigtable

- Input = set of records
 - Record = vertex data and edges
 - Assignment based on file boundaries

- Worker reads input
 - If it belongs to any of the vertices it manages, messages sent locally
 - Else worker sends messages to remote workers

- After data is loaded, all vertices are active
Computation

• Master tells each worker to perform a superstep

• Worker:
 – Iterates through vertices (one thread per partition)
 – Calls `Compute()` method for each active vertex
 – Delivers messages from the previous superstep
 – Outgoing messages
 • Sent asynchronously
 • Delivered before the end of the superstep

• When done
 – worker tells master how many vertices will be active in the next superstep

• Computation done when no more active vertices in the cluster
 – Master may instruct workers to save their portion of the graph
Handling failure

• **Checkpointing**
 – Controlled by master … every N supersteps
 – Master asks a worker to checkpoint at the start of a superstep
 • Save state of partitions to persistent storage
 – Vertex values
 – Edge values
 – Incoming messages
 – Master is responsible for saving aggregator values

• **Master sends “ping” messages to workers**
 – If worker does not receive a ping within a time period
 ⇒ Worker terminates
 – If the master does not hear from a worker
 ⇒ Master marks worker as failed

• **When failure is detected**
 – Master reassigns partitions to the current set of workers
 – **All** workers reload partition state from most recent checkpoint
Apache Giraph
- Initially created at Yahoo
- Used at Facebook to analyze the social graph of users
- Runs under Hadoop MapReduce framework
 - Runs as a *Map*-only job
 - Adds fault-tolerance to the master by using ZooKeeper for coordination
 - Uses Java instead of C++

== Chubby
Conclusion

• Vertex-centric approach to BSP

• Computation = set of supersteps
 – Compute() called on each vertex per superstep
 – Communication between supersteps: barrier synchronization

• Hides distribution from the programmer
 – Framework creates lots of workers
 – Distributes partitions among workers
 – Distributes input
 – Handles message sending, receipt, and synchronization
 – A programmer just has to think from the viewpoint of a vertex

• Checkpoint-based fault tolerance
Spark: Generalizing MapReduce
Apache Spark

• Goal: Generalize MapReduce
 – Similar shard-and-gather approach to MapReduce
 – Add fast data sharing & general DAGs

• Generic data storage interfaces
 – Storage agnostic: use HDFS, Cassandra database, whatever
 – Resilient Distributed Data (RDD) sets
 • An RDD is a chunk of data that gets processed – a large collection of stuff
 – In-memory caching

• More general functional programming model
 – Transformation and action
 – In Map-Reduce, transformation = map, action = reduce
High-level view

- Job = bunch of transformations & actions on RDDs
High-level view

- **Cluster manager** breaks the job into **tasks**
- Sends **tasks** to **worker** nodes where the data lives
Worker node

• One or more **executors**
 – JVM process
 – Talks with cluster manager
 – Receives **tasks**
 • JVM code (e.g., compiled Java, Clojure, Scala, JRuby, …)
 • Task = **transformation** or **action**
 – Data to be processed (RDD)
 • Local to the node
 – Cache
 • Stores frequently-used data in memory
 • Key to high performance
Data & RDDs

• Data organized into RDDs:
 – Big data: partition it across lots of computers

• How are RDDs created?
 1. Create from any file stored in HDFS or other storage supported in Hadoop (Amazon S3, HDFS, HBase, Cassandra, etc.)
 • Created externally (e.g., event stream, text files, database)
 • Example:
 – Query a database & make query the results an RDD
 – Any Hadoop InputFormat, such as a list of files or a directory
 2. Streaming sources (via Spark Streaming)
 • Fault-tolerant stream with a sliding window
 3. An RDD can be the output of a Spark transformation function
 • Example, filter out data, select key-value pairs
Properties of RDDs

• **Immutable**
 – You cannot change it – only create new RDDs
 – The framework will eventually collect unused RDDs

• **Typed**
 – Contain some parsable data structure – e.g., key-value set

• Created from – and thus **dependent** on other RDDs
 – Either original source data or computed from one or more other RDDs

• **Partitioned** – parts of an RDD may go to different servers
 – Function can be defined for computing each split
 – Default partitioning function = \(\text{hash(key)} \mod \text{server_count} \)

• **Ordered** (optional)
 – Elements in an RDD can be sorted
Operations on RDDs

• Two types of operations on RDDs

• Transformations
 – Lazy – not computed immediately
 – Transformed RDD is recomputed when an action is run on it
 • Work backwards:
 – What RDDs do you need to apply to get an action?
 – What RDDs do you need to apply to get the input to this RDD?
 – RDD can be persisted into memory or disk storage

• Actions
 – Finalizing operations
 • Reduce, count, grab samples, write to file
Spark Transformations

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>map(func)</td>
<td>Pass each element through a function <code>func</code></td>
</tr>
<tr>
<td>filter(func)</td>
<td>Select elements of the source on which <code>func</code> returns true</td>
</tr>
<tr>
<td>flatmap(func)</td>
<td>Each input item can be mapped to 0 or more output items</td>
</tr>
<tr>
<td>sample(withReplacement, fraction, seed)</td>
<td>Sample a <code>fraction</code> fraction of the data, with or without replacement, using a given random number generator seed</td>
</tr>
<tr>
<td>union(otherdataset)</td>
<td>Union of the elements in the source data set and <code>otherdataset</code></td>
</tr>
<tr>
<td>distinct(numtasks)</td>
<td>The distinct elements of the source dataset</td>
</tr>
</tbody>
</table>
Spark Transformations

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>groupByKey([numtasks])</code></td>
<td>When called on a dataset of (K, V) pairs, returns a dataset of (K, seq[V]) pairs</td>
</tr>
<tr>
<td><code>reduceByKey(func, [numtasks])</code></td>
<td>Aggregate the values for each key using the given <code>reduce</code> function</td>
</tr>
<tr>
<td><code>sortByKey([ascending], [numtasks])</code></td>
<td>Sort keys in ascending or descending order</td>
</tr>
<tr>
<td><code>join(otherDataset, [numtasks])</code></td>
<td>Combines two datasets, (K, V) and (K, W) into (K, (V, W))</td>
</tr>
<tr>
<td><code>cogroup(otherDataset, [numtasks])</code></td>
<td>Given (K, V) and (K, W), returns (K, Seq[V], Seq[W])</td>
</tr>
<tr>
<td><code>cartesian(otherDataset)</code></td>
<td>For two datasets of types T and U, returns a dataset of (T, U) pairs</td>
</tr>
</tbody>
</table>
Spark Actions

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>reduce (func)</td>
<td>Aggregate elements of the dataset using func.</td>
</tr>
<tr>
<td>collect (func, [numtasks])</td>
<td>Return all elements of the dataset as an array</td>
</tr>
<tr>
<td>count()</td>
<td>Return the number of elements in the dataset</td>
</tr>
<tr>
<td>first()</td>
<td>Return the first element of the dataset</td>
</tr>
<tr>
<td>take(n)</td>
<td>Return an array with the first n elements of the dataset</td>
</tr>
<tr>
<td>takeSample(withReplacement, fraction, seed)</td>
<td>Return an array with a random sample of num elements of the dataset</td>
</tr>
</tbody>
</table>
Spark Actions

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>saveAsTextFile(path)</code></td>
<td>Write dataset elements as a text file</td>
</tr>
<tr>
<td><code>saveAsSequenceFile(path)</code></td>
<td>Write dataset elements as a Hadoop SequenceFile</td>
</tr>
<tr>
<td><code>countByKey()</code></td>
<td>For (K, V) RDDs, return a map of (K, Int) pairs with the count of each key</td>
</tr>
<tr>
<td><code>foreach(func)</code></td>
<td>Run \textit{func} on each element of the dataset</td>
</tr>
</tbody>
</table>
Data Storage

• Spark does not care how source data is stored
 – RDD connector determines that
 – E.g., read RDDs from tables in a Cassandra DB; write new RDDs to Cassandra tables

• RDD Fault tolerance
 – RDDs track the sequence of transformations used to create them
 – Enables recomputing of lost data
 • Go back to the previous RDD and apply the transforms again
Example: processing logs

- Transform (creates new RDDs)
 - Grab error message from a log
 - Grab only ERROR messages & extract the source of error

- Actions: Count mysql & php errors

```scala
// base RDD
val lines = sc.textFile("hdfs://...")

// transformed RDDs
val errors = lines.filter(_.startsWith("ERROR"))
val messages = errors.map(_.split("\t")).map(r => r(1))
messages.cache()

// action 1
messages.filter(_.contains("mysql")).count()

// action 2
messages.filter(_.contains("php")).count()
```
Spark Streaming

• Map-Reduce & Pregel expect static data

• **Spark Streaming** enables processing live data streams
 – Same programming operations
 – Input data is chunked into batches
 • Programmer specifies time interval
Spark Streaming: DStreams

• Discretized Stream = DStream
 – Continuous stream of data (from source or a transformation)
 – Appears as a continuous series of RDDs, each for a time interval

 – Each operation on a DStream translates to operations on the RDDs

 – Join operations allow combining multiple streams
Spark Summary

• **Supports streaming**
 – Handle continuous data streams via Spark Streaming

• **Fast**
 – Often up to 10x faster on disk and 100x faster in memory than MapReduce
 – General execution graph model
 • No need to have “useless” phases just to fit into the model
 – In-memory storage for RDDs

• **Fault tolerant: RDDs can be regenerated**
 – You know what the input data set was, what transformations were applied to it, and what output it creates
The end