Can we make MapReduce easier?

Apache Pig

- Why?
 - Make it easy to use MapReduce via scripting instead of Java
 - Make it easy to use multiple MapReduce stages
 - Built-in common operations for join, group, filter, etc.
- How to use?
 - Use Grunt – the pig shell
 - Submit a script directly to pig
 - Use the PigServer Java class
 - PigPen – Eclipse plugin
- Pig compiles to several Hadoop MapReduce jobs

Pig: Loading Data

Load/store relations in the following formats:
- PigStorage: field-delimited text
- BinStorage: binary files
- BinaryStorage: single-field tuples with a value of bytearray
- TextLoader: plain-text
- PigDump: stores using toString() on tuples, one per line

Example

```java
log = LOAD 'test.log' AS (user, timestamp, query);
grp = GROUP log by user;
    # FILTER input is grp: list of log entries grouped by user
    cnt = FILTER grp: BY cnt > 50;
    # ORDER input is cnt
    srtd = ORDER cnt: BY cnt;
STORE srtd INTO 'output';
```

- Each statement defines a new dataset
 - Datasets can be given aliases to be used later
- FOREACH iterates over the members of a "bag"
 - Input is grp: list of log entries grouped by user
 - Output is group, COUNT(log): list of (user, count)
- FILTER applies conditional filtering
- ORDER applies sorting
MapReduce isn’t always the answer

- MapReduce works well for certain problems
 - Framework provides
 - Automatic parallelization
 - Automatic job distribution

- For others:
 - May require many iterations
 - Data locality usually not preserved between Map and Reduce
 - Lots of communication between map and reduce workers

Bulk Synchronous Parallel (BSP)

- Computing model for parallel computation
- Series of supersteps
 1. Concurrent computation
 2. Communication
 3. Barrier synchronization

Processes (workers) are randomly assigned to processors
Each process uses only local data
Each computation is asynchronous of other concurrent computation
Computation time may vary
Bulk Synchronous Parallel (BSP)

- Series of supersteps
 1. Concurrent computation
 2. Communication
 3. Barrier synchronization

- The next superstep does not begin until all messages have been received.
- Barriers ensure no deadlock: no circular dependency can be created.
- Provide an opportunity to checkpoint results for fault tolerance.
- If failure, restart computation from last superstep.

BSP Implementation: Apache Hama

- Hama: BSP framework on top of HDFS
- Provides automatic parallelization & distribution
- Uses Hadoop RPC
- Data is serialized with Google Protocol Buffers
- Zookeeper for coordination (Apache version of Google’s Chubby)
- Handles notifications for Barrier Sync

- Good for applications with data locality
 - Matrices and graphs
 - Algorithms that require a lot of iterations

Hama programming (high-level)

- Pre-processing
 - Define the number of peers for the job
 - Split initial inputs for each of the peers to run their supersteps
 - Framework assigns a unique ID to each worker (peer)

- Superstep: the worker function is a superstep
 - getCurrentMessage() – input messages from previous superstep
 - Compute – your code
 - sendMessage(peer, msg) – send messages to a peer
 - sync() – synchronize with other peers (barrier)

- File I/O
 - Key/value model used by Hadoop MapReduce & HBase
 - readNext(key, value)
 - write(key, value)

For more information

- Architecture, examples, API
- Take a look at:
 - Apache Hama project page
 - http://hama.apache.org
 - Hama BSP tutorial
 - Apache Hama Programming document

Graphs are common in computing

- Social links
 - Friends
 - Academic citations
 - Music
 - Movies
- Web pages
- Network connectivity
- Roads
- Disease outbreaks
Processing graphs on a large scale is hard

- Computation with graphs
 - Poor locality of memory access
 - Little work per vertex
- Distribution across machines
 - Communication complexity
 - Failure concerns
- Solutions
 - Application-specific, custom solutions
 - MapReduce or databases
 - But require many iterations (and a lot of data movement)
 - Single-computer libraries: limits scale
 - Parallel libraries: do not address fault tolerance
 - BSP: close but too general

Pregel: a vertex-centric BSP

Input: directed graph
- A vertex is an object
 - Each vertex uniquely identified with a name
 - Each vertex has a modifiable value
 - Directed edges: links to other objects
 - Associated with source vertex
 - Each edge has a modifiable value
 - Each edge has a target vertex identifier

Pregel: computation

Computation: series of supersteps
- Same user-defined function runs on each vertex
- Receives messages sent from the previous superstep
- May modify the state of the vertex or of its outgoing edges
- Sends messages that will be received in the next superstep
 - Typically to outgoing edges
 - But can be sent to any known vertex
- May modify the graph topology
- Each superstep ends with a barrier (synchronization point)

Pregel: termination

Pregel terminates when every vertex votes to halt
- Initially, every vertex is in an active state
 - Active vertices compute during a superstep
- Each vertex may choose to deactivate itself by voting to halt
 - The vertex has no more work to do
 - Will not be executed by Pregel
 - UNLESS the vertex receives a message
 - Then it is reactivated
 - Will stay active until it votes to halt again
- Algorithm terminates when all vertices are inactive and there are no messages in transit

Pregel: output

- Output is the set of values output by the vertices
- Often a directed graph
 - May be non-isomorphic to original since edges & vertices can be added or deleted
 - ... Or summary data

Examples of graph computations

- Shortest path to a node
 - Each iteration, a node sends the shortest distance received to all neighbors
- Cluster identification
 - Each iteration: get info about clusters from neighbors.
 - Add myself
 - Pass useful clusters to neighbors (e.g., within a certain depth or size)
 - May combine related vertices
 - Output is a smaller set of disconnected vertices representing clusters of interest
- Graph mining
 - Traverse a graph and accumulate global statistics
- Page rank
 - Each iteration: update web page ranks based on messages from incoming links.
Simple example: find the maximum value

- Each vertex contains a value
- In the first superstep:
 - A vertex sends its value to its neighbors
- In each successive superstep:
 - If a vertex learned of a larger value from its incoming messages, it sends it to its neighbors
 - Otherwise, it votes to halt
- Eventually, all vertices get the largest value
- When no vertices change in a superstep, the algorithm terminates

Semi-pseudocode:
```c++
class MaxValueVertex : public Vertex<int, void, int> {
  void Compute(MessageIterator *msgs) {
    int maxv = GetValue();
    for (; !msgs->Done(); msgs->Next())
      maxv = max(msgs.Value(), maxv);
    if (maxv > GetValue() || (step == 0)) {
      *MutableValue() = maxv;
      OutEdgeIterator out = GetOutEdgeIterator();
      for (; !out.Done(); out.Next())
        sendMessageTo(out.Target(), maxv)
    } else
      VoteToHalt();
  }
};
```

Summary: find the maximum value

1. vertex value type; 2. edge value type (none!); 3. message value type

Done!
Locality

• Vertices and edges remain on the machine that does the computation

• To run the same algorithm in MapReduce
 – Requires chaining multiple MapReduce operations
 – Entire graph state must be passed from Map to Reduce
 … and again as input to the next Map

Pregel API: Basic operations

• A user subclasses a Vertex class

• Methods
 – Compute(MessageIterator*): Executed per active vertex in each superstep
 – MessageIterator identifies incoming messages from previous supersteps
 – GetVertex(): Get the current value of the vertex
 – MutableValue(): Set the value of the vertex
 – GetOutEdgeIterator(): Get a list of outgoing edges
 – Target(): identify target vertex on an edge
 – GetValue(): get the value of the edge
 – MutableValue(): set the value of the edge
 – SendMessageTo(): send a message to a vertex
 • Any number of messages can be sent
 • Ordering among messages is not guaranteed
 • A message can be sent to any vertex (but our vertex needs to have its ID)

Pregel API: Advanced operations

Combiners

• Each message has an overhead – let’s reduce # of messages
 – Many vertices are processed per worker (multi-threaded)
 – Pregel can combine messages targeted to one vertex into one message

• Combiners are application specific
 – Programmer subclasses a Combiner class and overrides Combine() method
 • No guarantee on which messages may be combined

Aggregators

• Handle global data
 – A vertex can provide a value to an aggregator during a superstep
 – Aggregator combines received values to one value
 – Value is available to all vertices in the next superstep

• User subclasses an Aggregator class

• Examples
 – Keep track of total edges in a graph
 – Generate histograms of graph statistics
 – Global flags: execute until some global condition is satisfied
 – Election: find the minimum or maximum vertex

Topology modification

• Examples
 – If we’re computing a spanning tree: remove unneeded edges
 – If we’re clustering: combine vertices into one vertex

• Add/remove edges/vertices

• Modifications visible in the next superstep

Pregel Design
Execution environment

• Many copies of the program are started on a cluster of machines
• One copy becomes the master
 – Will not be assigned a portion of the graph
 – Responsible for coordination
• Cluster’s name server = chubby
 – Master registers itself with the name service
 – Workers contact the name service to find the master

Partition assignment

• Master determines # partitions in graph
 – One or more partitions assigned to each worker
 – Partition = set of vertices
 – Default: for N partitions
 \[
 \text{hash}(\text{vertex ID}) \mod N \rightarrow \text{worker}
 \]
 – May deviate: e.g., place vertices representing the same web site in one partition
 – More than 1 partition per worker: improves load balancing
• Worker
 – Responsible for its section(s) of the graph
 – Each worker knows the vertex assignments of other workers

Input assignment

• Master assigns parts of the input to each worker
 – Data usually sits in GFS or Bigtable
• Input = set of records
 – Record = vertex data and edges
 – Assignment based on file boundaries
• Worker reads input
 – If it belongs to any of the vertices it manages, messages sent locally
 – Else worker sends messages to remote workers
• After data is loaded, all vertices are active

Computation

• Master tells each worker to perform a superstep
• Worker:
 – Iterates through vertices (one thread per partition)
 – Calls Compute() method for each active vertex
 – Delivers messages from the previous superstep
• When done
 – worker tells master how many vertices will be active in the next superstep
 – Computation done when no more active vertices in the cluster
 – Master may instruct workers to save their portion of the graph

Handling failure

• Checkpointing
 – Controlled by master ... every N supersteps
 – Master asks a worker to checkpoint at the start of a superstep
 – Save state of partitions to persistent storage
 – Vertex values
 – Edge values
 – Incoming messages
 – Master is responsible for saving aggregator values
• Master sends “ping” messages to workers
 – If worker does not receive a ping within a time period
 ⇒ Worker terminates
 – If the master does not hear from a worker
 ⇒ Master marks worker as failed
• When failure is detected
 – Master reassigns partitions to the current set of workers
 – All workers reload partition state from most recent checkpoint

Pregel outside of Google

Apache Giraph
 – Initially created at Yahoo
 – Used at Facebook to analyze the social graph of users
 – Runs under Hadoop MapReduce framework
 – Runs as a Map-only job
 – Adds fault-tolerance to the master by using ZooKeeper for coordination
 – Uses Java instead of C++}

== Chubby
Conclusion

• Vertex-centric approach to BSP
• Computation = set of supersteps
 – Compute() called on each vertex per superstep
 – Communication between supersteps: barrier synchronization

• Hides distribution from the programmer
 – Framework creates lots of workers
 – Distributes partitions among workers
 – Distributes input
 – Handles message sending, receipt, and synchronization
 – A programmer just has to think from the viewpoint of a vertex

• Checkpoint-based fault tolerance

Spark: Generalizing MapReduce

Apache Spark

• Goal: Generalize MapReduce
 – Similar shard-and-gather approach to MapReduce
 – Add fast data sharing & general DAGs

• Generic data storage interfaces
 – Storage agnostic: use HDFS, Cassandra database, whatever
 – Resilient Distributed Data (RDD) sets
 • An RDD is a chunk of data that gets processed – a large collection of stuff
 • In-memory caching

• More general functional programming model
 – Transformation and action
 – In Map-Reduce, transformation = map, action = reduce

High-level view

• Job = bunch of transformations & actions on RDDs

High-level view

• Cluster manager breaks the job into tasks
• Sends tasks to worker nodes where the data lives

Worker node

• One or more executors
 – JVM process
 – Talks with cluster manager
 – Receives tasks
 • JVM code (e.g., compiled Java, Clojure, Scala, JRuby, …)
 • Task = transformation or action
 – Data to be processed (RDD)
 • Local to the node
 • Cache
 • Stores frequently-used data in memory
 • Key to high performance
Data & RDDs

- Data organized into RDDs:
 - Big data: partition it across lots of computers
- How are RDDs created?
 1. Create from any file stored in HDFS or other storage supported in Hadoop (Amazon S3, HDFS, HBase, Cassandra, etc.)
 - Created externally (e.g., event stream, text files, database)
 - Example:
 - Query a database & make query the result an RDD
 - Any Hadoop InputFormat, such as a list of files or a directory
 2. Streaming sources (via Spark Streaming)
 - Fault-tolerant stream with a sliding window
 3. An RDD can be the output of a Spark transformation function
 - Example, filter out data, select key-value pairs

Properties of RDDs

- Immutable
 - You cannot change it – only create new RDDs
 - The framework will eventually collect unused RDDs
- Typed
 - Contain some parsable data structure – e.g., key-value set
 - Created from – and thus dependent on other RDDs
 - Either original source data or computed from one or more other RDDs
- Partitioned
 - Parts of an RDD may go to different servers
 - Function can be defined for computing each split
 - Default partitioning function = hash(key) mod server_count
- Ordered (optional)
 - Elements in an RDD can be sorted

Operations on RDDs

- Two types of operations on RDDs
 - Transformations
 - Lazy – not computed immediately
 - Transformed RDD is recomputed when an action is run on it
 - Work backwards:
 - What RDDs do you need to apply to get an action?
 - What RDDs do you need to apply to get the input to this RDD?
 - RDD can be persisted into memory or disk storage
 - Actions
 - Finalizing operations
 - Reduce, count, grab samples, write to file

Spark Transformations

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>map(func)</td>
<td>Pass each element through a function</td>
</tr>
<tr>
<td>filter(func)</td>
<td>Select elements of the source on which func returns true</td>
</tr>
<tr>
<td>flatmap(func)</td>
<td>Each input item can be mapped to 0 or more output items</td>
</tr>
<tr>
<td>sample(withReplacement, fraction, seed)</td>
<td>Sample a fraction fraction of the data, with or without replacement, using a given random number generator seed</td>
</tr>
<tr>
<td>union(otherDataset)</td>
<td>Union of the elements in the source data set and otherdataset</td>
</tr>
<tr>
<td>distinct(numtasks)</td>
<td>The distinct elements of the source dataset</td>
</tr>
<tr>
<td>groupByKey(numtasks)]</td>
<td>When called on a dataset of (K, V) pairs, returns a dataset of (K, seq[V]) pairs</td>
</tr>
<tr>
<td>reduceByKey(func, numtasks)]</td>
<td>Aggregate the values for each key using the given reduce function</td>
</tr>
<tr>
<td>sortByKey(ascending), numtasks)]</td>
<td>Sort keys in ascending or descending order</td>
</tr>
<tr>
<td>join(otherDataset, numtasks)]</td>
<td>Combines two datasets, (K, V) and (K, W) into (K, (V, W))</td>
</tr>
<tr>
<td>cogroup(otherDataset, numtasks)]</td>
<td>Given (K, V) and (K, W), returns (K, Seq[V], Seq[W])</td>
</tr>
<tr>
<td>cartesian(otherDataset)]</td>
<td>For two datasets of types T and U, returns a dataset of (T, U) pairs</td>
</tr>
</tbody>
</table>

Spark Actions

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>reduce(func)</td>
<td>Aggregate elements of the dataset using func.</td>
</tr>
<tr>
<td>collect(func, numtasks)]</td>
<td>Return all elements of the dataset as an array</td>
</tr>
<tr>
<td>count()</td>
<td>Return the number of elements in the dataset</td>
</tr>
<tr>
<td>first()</td>
<td>Return the first element of the dataset</td>
</tr>
<tr>
<td>take(n)</td>
<td>Return an array with the first n elements of the dataset</td>
</tr>
<tr>
<td>takeSample(withReplacement, fraction, seed)]</td>
<td>Return an array with a random sample of num elements of the dataset</td>
</tr>
</tbody>
</table>
Spark Actions

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>saveAsTextFile(path)</code></td>
<td>Write dataset elements as a text file</td>
</tr>
<tr>
<td><code>saveAsSequenceFile(path)</code></td>
<td>Write dataset elements as a Hadoop SequenceFile</td>
</tr>
<tr>
<td><code>countByKey()</code></td>
<td>For (K, V) RDDs, return a map of (K, Int) pairs with the count of each key</td>
</tr>
<tr>
<td><code>foreach(func)</code></td>
<td>Run func on each element of the dataset</td>
</tr>
</tbody>
</table>

Data Storage

- Spark does not care how source data is stored
 - RDD connector determines that
 - E.g., read RDDs from tables in a Cassandra DB; write new RDDs to Cassandra tables
- RDD Fault tolerance
 - RDDs track the sequence of transformations used to create them
 - Enables recomputing of lost data
 - Go back to the previous RDD and apply the transforms again

Example: processing logs

- Transform (creates new RDDs)
 - Grab error message from a log
 - Grab only ERROR messages & extract the source of error
- Actions : Count mysql & php errors

```scala
// base RDD
val lines = sc.textFile("hdfs://...")
// transformed RDDs
val errors = lines.filter(_.startsWith("ERROR"))
val messages = errors.map(_.split("\t")).map(r => r(1))
messages.cache()
// action 1
messages.filter(_.contains("mysql")).count()
// action 2
messages.filter(_.contains("php")).count()
```

Spark Streaming

- Map-Reduce & Pregel expect static data
- Spark Streaming enables processing live data streams
 - Same programming operations
 - Input data is chunked into batches
 - Programmer specifies time interval

Spark Streaming: DStreams

- Discretized Stream = DStream
 - Continuous stream of data (from source or a transformation)
 - Appears as a continuous series of RDDs, each for a time interval
 - Each operation on a DStream translates to operations on the RDDs
 - Join operations allow combining multiple streams

Spark Summary

- Supports streaming
 - Handle continuous data streams via Spark Streaming
- Fast
 - Often up to 10x faster on disk and 100x faster in memory than MapReduce
 - General execution graph model
 - No need to have "useless" phases just to fit into the model
 - In-memory storage for RDDs
- Fault tolerant: RDDs can be regenerated
 - You know what the input data set was, what transformations were applied to it, and what output it creates
The end