Distributed Systems
Assignment 3 Review

Paul Krzyzanowski
Rutgers University
Fall 2017
Question 1 (Paxos)

Why can an acceptor not necessarily accept the first value it receives but must sometimes accept different values?

[answer from the video]

There might not be a majority of proposed values to determine a winner.

For example:
- 2 acceptors might have value A
- 2 acceptors might have value B
- 1 acceptor might have value C

Therefore, there won’t be one value that all servers can agree on as the majority value. An acceptor has the right to change its mind.

A value that has been accepted doesn’t mean it is chosen. It is only chosen once we have a majority of acceptors.

First check for existing proposed values. Reject older proposals (each proposal has a proposal number) received after newer ones.
Question 1 – Discussion

Why can an acceptor not necessarily accept the first value it receives but must sometimes accept different values?

If each acceptor just accepts a proposed value, it is possible that no acceptors get a majority of any proposed value

- Acceptors therefore have to be able to accept different values – they may have to change their mind
- They cannot accept *every* proposed value because then multiple values could be chosen
- Once a value has been chosen, a new proposer has to abandon its value and use a previously chosen value
 - We need a 2 phase protocol: phase 1 asks the acceptor for chosen values before proposing a value
 - Any competing proposals have to be aborted
 - This is done by forcing an order: newer proposals will take precedence over older proposals
Paxos summary

Two-phase protocol: started by a proposer

• Phase 1: (prepare)
 Broadcast prepare request to all acceptors
 – Acceptor will return the information about the highest proposal it has accepted (if any) – allows proposer to find out if any other values have been chosen so we use that value instead
 – Will promise it will never accept a proposal number with a lower request (blocks older proposals)

• Phase 2: Send accept
 – If a majority of acceptors respond that they agree on this value, then it is chosen.
When does a proposer have to change the value that it is proposing during the Paxos consensus protocol?

- A proposer sends a value to an acceptor (= prepare message)
 - Multiple proposers may do this concurrently.

- Acceptors respond to a prepare request from a proposer with the highest numbered proposal that they accepted (if another proposal has already been accepted).
 - Usually, this will be the same value as in the prepare message.
 - However, if multiple requests came in concurrently, an acceptor may have seen a higher number. It responds to each proposer with that higher number.

- A proposer must ask for that value to be accepted even if it initially proposed a different value.

- This does not violate the requirement of consensus since the algorithm selects one of the proposed values.
Raft uses a single leader (one server is elected as a leader). Explain how Raft performs leader election.

Short answer:

Each candidate starts a random timer before proposing itself as a leader & sending election messages to the group.

If you receive a leader proposal message and you have not yet proposed yourself, you will acknowledge that candidate and not vote for yourself.

If a candidate gets majority votes, it becomes the leader.
Raft uses a single leader (one server is elected as a leader). Explain how Raft performs leader election.

To start an election, a candidate votes for itself and sends a request vote message to all other servers. Other servers that have not yet voted and receive the request acknowledge the candidate to be the leader. Each server that receives a request will vote for at most one candidate.

If the candidate receives a majority of acknowledgements, it becomes the leader.

If the candidate does not win or lose an election, it times out and starts a new election. Randomized timeouts are used to ensure that split votes happen rarely.

To support recovery and avoid stale state, a “term number” is incremented after each election

If the candidate receives a heartbeat from another server and that leader’s term # is at least as large as the candidate’s current term, then the candidate recognizes the leader as legitimate and becomes a follower.
Question 4 (Raft)

An elected leader takes client requests. Each request is essentially a log entry that will be replicated among the servers. When is a log entry committed in Raft?

A log entry is committed once the leader that created the entry has replicated it on a majority of the servers.

Committed means that the log entry is applied to the state machine.
The End