Distributed Systems

06. Logical Clocks

Paul Krzyzanowski
Rutgers University
Fall 2016
Logical clocks

Assign sequence numbers to messages
- All cooperating processes can agree on order of events
- vs. physical clocks: report time of day

Assume no central time source
- Each system maintains its own local clock
- No total ordering of events
 • No concept of happened-when
Happened-before

Lamport’s “happened-before” notation

\[a \rightarrow b \] event \(a \) happened before event \(b \)

e.g.: \(a \): message being sent, \(b \): message receipt

Transitive:

if \(a \rightarrow b \) and \(b \rightarrow c \) then \(a \rightarrow c \)
Logical clocks & concurrency

Assign a “clock” value to each event
– if $a \rightarrow b$ then $\text{clock}(a) < \text{clock}(b)$
– since time cannot run backwards

If a and b occur on different processes that do not exchange messages, then neither $a \rightarrow b$ nor $b \rightarrow a$ are true
– These events are concurrent
– Otherwise, they are causal
Event counting example

- Three systems: P_0, P_1, P_2
- Events a, b, c, …
- Local event counter on each system
- Systems occasionally communicate
Event counting example

- P_1: a, b, c, d, e, f
- P_2: g, h, i
- P_3: j, k

Numbers indicate the order of events on each path.
Event counting example

Bad ordering:

\[e \rightarrow h \quad \text{but} \quad 5 \geq 2 \]
\[f \rightarrow k \quad \text{but} \quad 6 \geq 2 \]
Lamport’s algorithm

• Each message carries a timestamp of the sender’s clock

• When a message arrives:

 if receiver’s *clock* < *message_timestamp*

 set system clock to \((message_timestamp + 1)\)

 else do nothing

• Clock must be advanced between any two events in the same process
Lamport’s algorithm

Algorithm allows us to maintain time ordering among related events

– Partial ordering
Event counting example

Applying Lamport’s algorithm

We have good ordering where we used to have bad ordering:

\[e \rightarrow h \quad \text{and} \quad 5 < 6 \]
\[f \rightarrow k \quad \text{and} \quad 6 < 7 \]
Summary

• Algorithm needs monotonically increasing software counter

• Incremented at least when events that need to be timestamped occur

• Each event has a Lamport timestamp attached to it

• For any two events, where $a \rightarrow b$:
 $$L(a) < L(b)$$
Problem: Identical timestamps

\[a \rightarrow b, \ b \rightarrow c, \ldots: \text{local events sequenced} \]

\[i \rightarrow c, \ f \rightarrow d, \ d \rightarrow g, \ldots: \text{Lamport imposes a send} \rightarrow \text{receive relationship} \]

Concurrent events (e.g., \(b \) & \(g \); \(i \) & \(k \)) may have the same timestamp … or not
Unique timestamps (total ordering)

We can force each timestamp to be unique

- Define global logical timestamp \((T_i, i)\)
 - \(T_i\) represents local Lamport timestamp
 - \(i\) represents process number (globally unique)
 - e.g., (host address, process ID)

- Compare timestamps:
 \[(T_i, i) < (T_j, j)\]
 if and only if
 \[T_i < T_j \text{ or } T_i = T_j \text{ and } i < j\]

Does not necessarily relate to actual event ordering
Unique (totally ordered) timestamps
Problem: Detecting causal relations

If $L(e) < L(e')$
- We cannot conclude that $e \rightarrow e'$

By looking at Lamport timestamps
- We cannot conclude which events are causally related

Solution: use a vector clock

Vector clocks are a way to prove the sequence of events by keeping version history based on each process that made changes to an object
Example

- Group of processes: Alice, Bob, Cindy, David
- They concurrently modify one object: “what should we eat?”
- Each process keeps a local counter

Alice writes the value & sends to group

Alice: 1

Pizza

Bob modifies the value & sends to group

Alice: 1, Bob: 1

Chinese

Bob’s version updates Alice’s

Alice modifies the value & sends to group

Alice: 2, Bob: 1

Moroccan

Alice makes changes over Bob’s
Cindy modifies & sends to group

Alice: 2, Bob: 1, Cindy: 1

Thai

Bob concurrently modifies & sends to group

Alice: 2, Bob: 2

Chinese

Cindy & Bob’s changes are concurrent – members must resolve conflict
Vector clocks

Rules:

1. Vector initialized to 0 at each process
 \[V_i [j] = 0 \text{ for } i, j = 1, \ldots, N \]

2. Process increments its element of the vector in local vector before timestamping event:
 \[V_i [i] = V_i [i] + 1 \]

3. Message is sent from process \(P_i \) with \(V_i \) attached to it

4. When \(P_j \) receives message, compares vectors element by element and sets local vector to higher of two values
 \[V_j [i] = \max(V_i [i], V_j [i]) \text{ for } i = 1, \ldots, N \]

For example,
received: \([0, 5, 12, 1]\), have: \([2, 8, 10, 1]\)
new timestamp: \([2, 8, 12, 1]\)
Comparing vector timestamps

Define

\[V = V' \text{ iff } V[i] = V'[i] \text{ for } i = 1 \ldots N \]
\[V \leq V' \text{ iff } V[i] \leq V'[i] \text{ for } i = 1 \ldots N \]

For any two events \(e, e' \)

if \(e \rightarrow e' \) then \(V(e) < V(e') \)

... just like Lamport's algorithm

if \(V(e) < V(e') \) then \(e \rightarrow e' \)

Two events are **concurrent** if neither

\[V(e) \leq V(e') \text{ nor } V(e') \leq V(e) \]
Vector timestamps

(0,0,0) P₁

(0,0,0) P₂

(0,0,0) P₃

a b c d e f
Vector timestamps

Event timestamp
a (1,0,0)
Vector timestamps

Event	timestamp
a | (1,0,0)
b | (2,0,0)

(0,0,0) (1,0,0)

(0,0,0) (2,0,0)

P1

(0,0,0) P2

(0,0,0) P3
Vector timestamps

<table>
<thead>
<tr>
<th>Event</th>
<th>timestamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(1,0,0)</td>
</tr>
<tr>
<td>b</td>
<td>(2,0,0)</td>
</tr>
<tr>
<td>c</td>
<td>(2,1,0)</td>
</tr>
</tbody>
</table>

Event timeline:
- **P₁**: (0,0,0) → (1,0,0) → (2,0,0)
- **P₂**: (0,0,0) → (2,1,0)
- **P₃**: (0,0,0) → (2,1,0)
Vector timestamps

<table>
<thead>
<tr>
<th>Event</th>
<th>Timestamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(1,0,0)</td>
</tr>
<tr>
<td>b</td>
<td>(2,0,0)</td>
</tr>
<tr>
<td>c</td>
<td>(2,1,0)</td>
</tr>
<tr>
<td>d</td>
<td>(2,2,0)</td>
</tr>
</tbody>
</table>
Vector timestamps

<table>
<thead>
<tr>
<th>Event</th>
<th>Timestamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(1,0,0)</td>
</tr>
<tr>
<td>b</td>
<td>(2,0,0)</td>
</tr>
<tr>
<td>c</td>
<td>(2,1,0)</td>
</tr>
<tr>
<td>d</td>
<td>(2,2,0)</td>
</tr>
<tr>
<td>e</td>
<td>(0,0,1)</td>
</tr>
</tbody>
</table>

September 28, 2016
© 2014-2016 Paul Krzyzanowski
Vector timestamps

Event	timestamp
a | (1,0,0)
b | (2,0,0)
c | (2,1,0)
d | (2,2,0)
e | (0,0,1)
f | (2,2,2)
Vector timestamps

(0,0,0) a (1,0,0)
(0,0,0) b (2,0,0)
(0,0,0) c (2,1,0)
(0,0,0) d (2,2,0)
(0,0,0) e (0,0,1)
(0,0,0) f (2,2,2)

Event timestamp
a (1,0,0)
b (2,0,0)
c (2,1,0)
d (2,2,0)
e (0,0,1)
f (2,2,2)

concurrent events
Vector timestamps

Event	timestamp
 a | (1,0,0)
 b | (2,0,0)
 c | (2,1,0)
 d | (2,2,0)
 e | (0,0,1)
 f | (2,2,2)

concurrent events
Vector timestamps

<table>
<thead>
<tr>
<th>Event</th>
<th>Timestamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(1,0,0)</td>
</tr>
<tr>
<td>b</td>
<td>(2,0,0)</td>
</tr>
<tr>
<td>c</td>
<td>(2,1,0)</td>
</tr>
<tr>
<td>d</td>
<td>(2,2,0)</td>
</tr>
<tr>
<td>e</td>
<td>(0,0,1)</td>
</tr>
<tr>
<td>f</td>
<td>(2,2,2)</td>
</tr>
</tbody>
</table>

concurrent events
Vector timestamps

Event	timestamp
 a | (1,0,0)
b | (2,0,0)
c | (2,1,0)
d | (2,2,0)
e | (0,0,1)
f | (2,2,2)

concurrent events
Generalizing Vector Timestamps

• A “vector” can be an list of tuples:
 – For processes P_1, P_2, P_3, …
 – Each process has a globally unique Process ID, P_i (e.g., MAC_address:PID)
 – Each process maintains its own timestamp: T_{P1}, T_{P2}, …
 – Vector: { $<P_1, T_{P1}>$, $<P_2, T_{P2}>$, $<P_3, T_{P3}>$, … }

• Any one process may have only partial knowledge of others
 – New timestamp for a received message:
 • Compare all matching sets of process IDs: set to highest of values
 • Any non-matched $<P, T>$ sets get added to the timestamp
 – For a happened-before relation:
 • At least one set of process IDs must be common to both timestamps
 • Match all corresponding $<P, T>$ sets: A:$<P_i, T_a>$, B:$<P_i, T_b>$
 • If $T_a \leq T_b$ for all common processes P, then $A \rightarrow B$
Summary: Logical Clocks & Partial Ordering

• Causality
 – If \(a \rightarrow b \) then event \(a \) can affect event \(b \)

• Concurrency
 – If neither \(a \rightarrow b \) nor \(b \rightarrow a \) then one event cannot affect the other

• Partial Ordering
 – Causal events are sequenced

• Total Ordering
 – All events are sequenced
The End