Distributed Systems

06. Logical clocks

Paul Krzyzanowski
Rutgers University

Fall 2017

.

September 24, 2018 © 2014-2018 Paul Krzyzanowski

i Logical clocks

Assign sequence numbers to messages
— All cooperating processes can agree on order of events
— vs. physical clocks: report time of day

Assume no central time source
— Each system maintains its own local clock

— No total ordering of events
* No concept of happened-when

« Assume multiple actors (processes)
— Each process has a unique 1D
— Each process has its own incrementing counter

\

September 24, 2018 © 2014-2018 Paul Krzyzanowski

! Happened-before

Lamport’s “happened-before” notation

a—-»>b event a happened before event b
e.g.. a. message being sent, b: message receipt

Transitive:
ifa—=band b »cthena - ¢

.

September 24, 2018 © 2014-2018 Paul Krzyzanowski

p
Logical clocks & concurrency

Assign a “clock” value to each event
— if a - b then clock(a) < clock(b)
— since time cannot run backwards

If a and b occur on different processes that do not
exchange messages, then neither a — b nor b — a are true
— These events are concurrent
— Otherwise, they are causal

.

September 24, 2018 © 2014-2018 Paul Krzyzanowski 4

p
Event counting example

* Three systems: P,, P, P,
 Events a, b, ¢, ...
» Local event counter on each system

« Systems occasionally communicate

.

September 24, 2018 © 2014-2018 Paul Krzyzanowski

p
Event counting example

a b C d e
P, O O Oo—O >
1 2 3 y 5 \ 6
g h i
P, O O >
. / 1 2 3 \
J K
P, O O >
1 2

.

September 24, 2018 © 2014-2018 Paul Krzyzanowski

-

Event counting example

P,

a b C d e
oO—o0O 0—O
1 2 7‘.7 5\ 6\
g h i
P, 0—O0
j/1 2

Bad ordering:

e—>h but 522
f>k but 622

.

>
3 \
K
P, O O >
1 2

September 24, 2018

© 2014-2018 Paul Krzyzanowski

/ Lamport’'s algorithm

« Each message carries a timestamp of the sender’s clock

 When a message arrives:

if receiver’s clock < message timestamp
set system clock to (message timestamp + 1)

else do nothing

» Clock must be advanced between any two events in the
same process

.

September 24, 2018 © 2014-2018 Paul Krzyzanowski

-

Lamport’'s algorithm

.

Algorithm allows us to maintain time ordering among
related events
— Partial ordering

September 24, 2018 © 2014-2018 Paul Krzyzanowski

p
Event counting example

Applying Lamport’s algorithm
a b C

:1 —o—o0— /0/2 5g\h 6\ i
2 J'/ 1 Zz \k

1 P4

We have good ordering where we used to have bad ordering:

e—>h and 5<6
f>k and 6<7

.

September 24, 2018 © 2014-2018 Paul Krzyzanowski

10

4)
Summary

 Algorithm needs monotonically increasing software counter

* Incremented at least when events that need to be
timestamped occur

« Each event has a Lamport timestamp attached to it

* For any two events, where a — b:
L(a) <L(b)

- J

September 24, 2018 © 2014-2018 Paul Krzyzanowski 11

-

Problem: |Identical timestamps

.

Pzwz. %W >
AT
& Soa

a—b, b—c, local events sequenced

c d e /7 f
P1m ../_\ X
4
g
1

i—c, f>d,d—>g, Lamportimposes a
send—receive relationship

Concurrent events (e.g., b & g; i & k) may have the same
timestamp ... or not

September 24, 2018 © 2014-2018 Paul Krzyzanowski

12

-

Unique timestamps (total ordering)

.

We can force each timestamp to be unique

— Define global logical timestamp (T, i)
« T, represents local Lamport timestamp
 jrepresents process number (globally unique)
— e.g., (host address, process ID)

— Compare timestamps:
(T 1) <(T; J)
if and only if
I,<T, or
Ii=T;,andi<j

Does not necessarily relate to actual event ordering

September 24, 2018 © 2014-2018 Paul Krzyzanowski

13

/ Unique (totally ordered) timestamps \

3 d e
P, O O O0—O >
11 2 7‘1.4/ o 6\
g h i
P, o—0

- J

September 24, 2018 © 2014-2018 Paul Krzyzanowski 14

Problem: Detecting causal relations

If L(e) < L(e’)

— We cannot conclude that e — e’

By looking at Lamport timestamps
— We cannot conclude which events are causally related

Solution: use a vector clock

Vector clocks are a way to prove the sequence of events bt
keeping version history based on each process that made
changes to an object

September 24, 2018 © 2014-2018 Paul Krzyzanowski 15

p
Example

» Group of processes: Alice, Bob, Cindy, David
« They concurrently modify one object: “‘what should we eat?”

« Each process keeps a local counter

Alice writes the value & sends to group

; To Bob
Alice: 1
) To Cindy
Pizza
To David

Bob reads ("Pizza", <alice:1>), modifies the value & sends to group

Alice: 1, Bob: 1 ToAlice (" Receiver
_ To Cindy <alice: 1, bob:1> is causal to &
Chinese follows <alice: 1>

To David

Bob’s version updates Alice’s

Alice reads ("Chinese", <alice:1, bob:1>), modifies the value & sends to group

Alice: 2, Bob: 1 o Bob Receiver
To Cindy <alice: 2, bob:1> is causal to &
Moroccan follows <alice: 1, bob:1>

To David
Alice makes changes over Bob’s

.

September 24, 2018 © 2014-2018 Paul Krzyzanowski 16

p
Example

Cindy modifies & sends to group

To Alice
Alice: 2, Bob: 1, Cindy: 1
. To Bob
Thai
To David

Bob concurrently modifies & sends to group

To Alice
Alice: 2. Bob: 2 _—

—— > To Cindy

Chlnese To David

Cindy & Bob’s changes are concurrent — members must resolve conflict

Receiver
<alice: 2, bob:1, cindy:1> is concurrent with <alice: 1, bob:2>

.

September 24, 2018 © 2014-2018 Paul Krzyzanowski

17

-

Vector clocks

.

Rules:
1.

Vector initialized to 0 at each process
V.[j]=0 for i,j=1, ..., N

Process increments its element of the vector in local vector
before timestamping event:
Vi[i]=Vi[i]+1

Message is sent from process P; with V; attached to it

When P, receives message, compares vectors element by
element and sets local vector to higher of two values
Vili]=max(V;[i] V;[i]) for I=1, .., N

For example,
received: [0, 5, 12, 1], have: [2, 8, 10, 1]
new timestamp: [2, 8, 12, 1]

September 24, 2018 © 2014-2018 Paul Krzyzanowski

18

p
Comparing vector timestamps

Define
V=V iff V[i]=V[i] fori=1..N
V<V iff V[i]<V[i] fori=1..N

For any two events e, €’
if e > e’ then V(e) < V(e)
... Just like Lamport’s algorithm
if V(e) < V(e’) thene —» ¢’

Two events are concurrent if neither
V(e) <V(e’) nor V(e) <V(e)

.

September 24, 2018 © 2014-2018 Paul Krzyzanowski

19

4)
Vector timestamps
(0,0,0) a b
P, O
00,0 \c d
P, O
(0,0.0) . \f
P O O
- J

September 24, 2018

© 2014-2018 Paul Krzyzanowski

20

4)
Vector timestamps
(1,0,0)

(0,0,0) a b

P, O
00,0 \C d

P, O
(0,0,0) . \f

P O O

Event timestamp
a (1,0,0)

- J

September 24, 2018

© 2014-2018 Paul Krzyzanowski

21

4)
Vector timestamps
(1,0,0) (2,0,0)
(0,0,0) a b
P, O
00,0 .\C d
P, O
(0,0,0) . \f
P O O
Event timestamp
a (1,0,0)
b (2,0,0)
- /

September 24, 2018

© 2014-2018 Paul Krzyzanowski

22

-

~
Vector timestamps
(1,000 (2,0,0)
(0,0,0) 2 b
"o 21,0
(0,0,0) ‘\’C’) ;
P, >
(0,0,0) . \f
P, O O
Event timestamp
a (1,0,0)
b (2,0,0)
c (2,1,0)
\ 4

September 24, 2018 © 2014-2018 Paul Krzyzanowski

23

! Vector timestamps

(1,000 (2,0,0)
(0,0,0) 2 b

" — 21,0 220
0.0,0) .\’C’ b

P, o
(0,0,0) .\ f
O

e
P, O
Event timestamp
a (1,0,0)
b (2,0,0)
C (2,1,0)
d (2,2,0)

.

September 24, 2018 © 2014-2018 Paul Krzyzanowski

-

Vector timestamps

(1,0,0)
(0,0,0) .

(2,0,0)

b

P,

" — 21,0 220
0.0,0) \’C’ b

(0,0,0)

e (0,0,1)

P;

.

=

Event timestamp
a (1,0,0)
b (2,0,0)
C (2,1,0)
d (2,2,0)
e (0,0,1)

September 24, 2018

© 2014-2018 Paul Krzyzanowski

25

-

Vector timestamps

(1,0,0)
(0,0,0) .

(2,0,0)

b

P,

" — 21,0 220
0.0,0) \’C’ b

(0,0,0)

O
\f (2,2,2)

P;

.

e (0,0,1)
O @
Event timestamp
a (1,0,0)
b (2,0,0)
C (2,1,0)
d (2,2,0)
e (0,0,1)
f (2,2,2)

September 24, 2018

© 2014-2018 Paul Krzyzanowski

26

-

Vector timestamps

(0,0,0)

.

(1,0,0)
a

(2,0,0)
b

P, —@
(0,0,0) w; 0)

(2,2,0)

d
P, o >
(0,0,0) e (0,0,1) \f (2,2,2)
P3 O O
Event timestamp
a (1,0,0)
b (2,0,0)
C (2,1,0) concurrent events
d (2,2,0)
e (0,0,1)
f (2,2,2)

September 24, 2018

© 2014-2018 Paul Krzyzanowski

27

-

Vector timestamps

(0,0,0)

(0,0,0)

.

P,

P;

(1,0,0)
a

(2,0,0)
b

P, O
(0,0,0) w; ,0)

(2,2,0)

e (0,0,1)

Event

timestamp

- 0O QO O T O

(1,0,0)

(2,0,0)
(2,1,0) \
(2,2,0)
001) «
(2,2,2)

concurrent events

September 24, 2018

© 2014-2018 Paul Krzyzanowski

28

-

Vector timestamps

(0,0,0)

.

(1,0,0)
a

(2,0,0)
b

P, O
(0,0,0) ‘%g ,0)

(2,2,0)
d

P, O >
(O’O’O) e (Ov0’1) \f (2’2’2)
P, O O
Event timestamp
a (1,0,0)
b (2,0,0)
C (2,1,0)
d (2,2,0) \ concurrent events
e (0,0,1) «—
f (2,2,2)

September 24, 2018

© 2014-2018 Paul Krzyzanowski

29

-

Vector timestamps

(1,0,0) (2,0,0)
(0,0,0) a b
2,1,0 2,2,0
0.00) ‘\C s
P, O >
(0,0,0) e (0,0,1) \f (2,2,2)
Event timestamp
a (1,0,0)
b (2,0,0)
Cc (2,1,0)
g Eggg; :; concurrent events
f (2,2,2)
-

September 24, 2018

© 2014-2018 Paul Krzyzanowski

30

-

Generalizing Vector Timestamps

\

» A‘"vector” can be a list of tuples:
— For processes P, P,, P, ...

— Each process has a globally unique Process ID, P; (e.g., MAC_address:PID)

— Each process maintains its own timestamp: Tp,, Tp,, ...

* Any one process may have only partial knowledge of others

— New timestamp for a received message:
« Compare all matching sets of process IDs: set to highest of values
* Any non-matched <P, T> sets get added to the timestamp

— For a happened-before relation:
» At least one set of process IDs must be common to both timestamps
* Match all corresponding <P, T> sets: A:<P, T >, B:<P, T,>
« If T,< T, for all common processes P, then A — B

September 24, 2018 © 2014-2018 Paul Krzyzanowski

31

Vector Clocks Summary

\

 Vector clocks give us a way of identifying which events
are causally related

« We are guaranteed to get the sequencing correct
» But

— The size of the vector increases with more actors
... and the entire vector must be stored with the data.

— Comparison takes more time than comparing two numbers

— What if messages are concurrent?
« App will have to decide how to handle conflicts

September 24, 2018 © 2014-2018 Paul Krzyzanowski

32

~

/ Summary: Logical Clocks & Partial Ordering

« Causality
— If a — b then event a can affect event b

« Concurrency
— If neither a — b nor b — a then one event cannot affect the other

 Partial Ordering

— Causal events are sequenced

 Total Ordering

— All events are sequenced

- J

September 24, 2018 © 2014-2018 Paul Krzyzanowski 33

.

The end

September 24, 2018

© 2014-2018 Paul Krzyzanowski

34

