Distributed Systems

O3r. Part I: Homework Review

Paul Krzyzanowski
Rutgers University

Fall 2014

_

September 24, 2014 © 2014 Paul Krzyzanowski

-
Question 1

What is the advantage of source snoop coherency behavior
compared to home snoop?

— This describes Intel's support for NUMA (Non-Uniform Memory
Access) using their QuickPath Interconnect — a high-speed network
that connects processors in a multiprocessor system.
 Home agent = CPU that has a connection to the memory with the data

— Home agent keeps track of which CPU has the latest cached copy
« Caching agent = CPU that may have or wants a cached copy

.

September 24, 2014 © 2014 Paul Krzyzanowski 2

4)

Question 1 discussion

« Goal is to make sure memory is coherent
— No processor will use out-of-date contents

« Home snoop

1. CPU that wants to read data contacts the home
agent for that memory location

2. Home agent sends a request to the CPU that
has the latest version

3. That CPU sends the update to (a) the
requesting CPU and (b) acknowledges the

home agent.

Caching Agent Home Agent

New Caching Agent

Caching Agent Home Agent

_ J

September 24, 2014 © 2014 Paul Krzyzanowski 3

[

_

\
Question 1 discussion
@ 9
e Source snoop
1. CPU that wants to read data contacts all other
CPUs
2. That CPU sends the data to P1 &
acknowledgement to P4
3. P4 acknowledges the end of the transaction. Caching Agent Home Agent
New Caching Agent
CPU
Caching Agent Home Agent

J

September 24, 2014 © 2014 Paul Krzyzanowski

[

Question 1

.

(a) What is the advantage of source snoop coherency
behavior compared to home snoop?

« Answer:

— The caching agent (the CPU that wants the data) sends requests to
the home agent and all other caching agents.

— The caching agent with the data responds directly to the requestor.
Two network hops instead of three to get the data.

(b) What is the downside?

— The technique uses more bandwidth because requests are sent to
all processors

September 24, 2014 © 2014 Paul Krzyzanowski 5

-
Question 2

What are three techniques used to reduce load on a
system?

1. Replication
— Multiple servers can handle the same request
— Distributes load

2. Distribution
— Different servers are responsible for different tasks

3. Caching

— Save previous results: avoid contacting a server

.

September 24, 2014 © 2014 Paul Krzyzanowski

-
Question 3

"Eate-sharing" is a key facet of the Internet's end-to-end
principle.

What is meant by the term fate-sharing?

* |t Is acceptable to lose the state information associated
with an entity if, at the same time, the entity itself is lost.

« Example
— It is OK to lose the TCP connection if the client or server dies

— Itis NOT OK to lose the TCP connection if a router in the network
dies

September 24, 2014 © 2014 Paul Krzyzanowski

-
Question 4

What is the end-to-end principle in networking?

 Application-specific functions ought to reside in the end
hosts of a network rather than in intermediary nodes —
provided they can be implemented "completely and
correctly" in the end hosts.

« Example
— TCP provides reliable, in-order data delivery over an unreliable
network
— All the logic to do this is at the “ends” — the computers

— Routers implement only what they have to: moving packets

.

September 24, 2014 © 2014 Paul Krzyzanowski

-

Question 5

Paper: Distributed Garbage Collection for Network Objects

a proposal is introduced for managing remote object
references

— a server maintains a dirty set per object: a list of active remote
references to a particular object.

— When a local garbage collector at a client determines that the client
has no more references to a remote object, it sends a clean message
to the server to remote the reference from the dirty set.

One snag is the situation where one process, A, passes an
object reference to another process, B. It is possible that the
garbage collector on A will send a clean message to the server
before B's dirty message is received.

Explain how this situation is handled. Assume neither process
A nor process B is the owner of the object. A simply passes the
object reference to B.

September 24, 2014 © 2014 Paul Krzyzanowski 9

[

Question 5

.

« Question summary:
1. Asends a reference for a remote object to B.

2. Adoesn't need it anymore so it tells the server that it has no
references (clean).

3. B receives the object reference and tells the server that it has a
reference (dirty).

— If the server gets rid of the object after step 2, it's gone and B
cannot access it.

« How do we fix this?

* Process Awill NOT send a clean message to the server
until it first gets an acknowledgement that B received the
object and sent a dirty message to the server

September 24, 2014 © 2014 Paul Krzyzanowski

10

_

Distributed Systems
03r. Part 2: Java RMI Programming Tutorial

Paul Krzyzanowski
Rutgers University

Fall 2013

September 24, 2014 © 2014 Paul Krzyzanowski

11

[Java RMI

* Allows a method to be invoked that resides on a different
JVM (Java Virtual Machine):
— Either a remote machine

— Or same machine, different processes
« Each process runs on a different Java Virtual Machines (JVM)
 Different address space per process/JVM

« RMI provides object-oriented RPC

.

September 24, 2014 © 2014 Paul Krzyzanowski

12

/

Participating processes

.

e Client
— Process that is invoking a method on a remote object

* Server
— Process that owns the remote object
— To the server, this is a local object

« Object Registry (rmiregistry)
— Name server that associates objects with names
— A server registers an object with rmiregistry

— URL namespace
rmi://hostname:port/pathname
e.g.. rmi://crapper.pk.org:12345/MyServer

L» Port number

SeémBPa Kr2pAahowski

13

(

Classes & Interfaces needed for Java RMI

« Remote: for accessing remote methods
— Used for remote objects

» Serializable: for passing parameters to remote methods
— Used for parameters

 Also needed.:
— RemoteException: network or RMI errors can occur

— UnicastRemoteObject: used to export a remote object reference or
obtain a stub for a remote object

— Naming: methods to interact with the registry

.

September 24, 2014 © 2014 Paul Krzyzanowski

14

[

Remote class

.

« Remote class (remote object)

— Instances can be used remotely
— Works like any other object locally

— In other address spaces, object is referenced with an object handle

» The handle identifies the location of the object

— If a remote object is passed as a parameter, its handle is passed

September 24, 2014 © 2014 Paul Krzyzanowski 15

-
Serializable interface

* Java.io.Serializable interface (serializable object)

— Allows an object to be represented as a sequence of bytes
(marshaled)

— Allows instances of objects to be copied between address spaces
« Can be passed as a parameter or be a return value to a remote object
» Value of object is copied (pass by value)

— Any objects that may be passed as parameters should be defined
to implement the java.io.Serializable interface

« Good news: you rarely need to implement anything
» All core Java types already implement the interface
« For your classes, the interface will serialize each variable iteratively

.

SeémBPa Kr2pAahowski

16

/

Remote classes

.

 Classes that will be accessed remotely have two parts:
1. interface definition
2. class definition

 Remote interface
— This will be the basis for the creation of stub functions
— Must be public
— Must extend java.rmi.Remote

— Every method in the interface must declare that it throws
java.rmi.RemoteException

* Remote class

— implements Remote interface
— extends java.rmi.server.UnicastRemoteObject

September 24, 2014 © 2014 Paul Krzyzanowski

17

(

Super-simple example program

.

 Client invokes a remote method with strings as parameter

e Server returns a string containing the reversed input
string and a message

SeémBPa Kr2pAahowski

18

Define the remote interface

Samplelnterface.java

import Java.rmi.Remote;
import jJava.rmi.RemoteException;

public interface SamplelInterface extends Remote {
public String invert (String msg) throws RemoteException;

» Interface is public
 Extends the Remote interface

» Defines methods that will be accessed remotely
— We have just one method here: invert

 Each method must throw a RemoteException
— In case things go wrong in the remote method invocation

September 24, 2014 © 2014 Paul Krzyzanowski 19

(

Define the remote class (Sample.java)

.

import Jjava.rmi.Remote;
import Jjava.rmi.RemoteException;
import Jjava.rmi.server.*;

public class Sample
extends UnicastRemoteObject
implements SamplelInterface {

public Sample () throws RemoteException { }

public String invert (String m) throws RemoteException {
// return input message with characters reversed
return new StringBuffer (m) .reverse().toString();

}
}

» Defines the implementation of the remote methods
* [timplements the interface we defined

* |t extends the java.rmi.server.UnicastRemoteObject class
— Defines a unicast remote object whose references are valid only
while the server process is alive.

September 24, 2014 © 2014 Paul Krzyzanowski 20

(
®

Next...

.

« We now have:
— The remote interface definition: Samplelnterface.java
— The server-side (remote) class: Sample.java

* Next, we'll write the server: SampleServer.java

* Two parts:
1. Create an instance of the remote class
2. Register it with the name server (rmiregistry)

September 24, 2014 © 2014 Paul Krzyzanowski

21

(

Server code (SampleServer.java)

.

» Create the object

new Sample ()

» Register it with the name server (rmiregisty)

Naming.rebind ("Sample”, new Sample())

* rmiregistry runs on the server

— The default port is 1099

— The name is a URL format and can be prefixed with a hosthame
and port: “//localhost:1099/Server”

September 24, 2014 © 2014 Paul Krzyzanowski

22

-
Server code: part 1 (SampleServer.java)

import java.rmi.Naming;
import java.rmi.RemoteException;
import java.rmi.server.UnicastRemoteObject;

public class SampleServer ({
public static void main(String args[]) {
if (args.length !'= 1) {
System.err.println("usage: java SampleServer rmi port");
System.exit (1) ;

.

September 24, 2014 © 2014 Paul Krzyzanowski 23

-
Server code: part 2 (SampleServer.java)

try {
// first command-line arg: the port of the rmiregistry

int port = Integer.parselInt(args[0])

// create the URL to contact the rmiregistry
String url = "//localhost:" + port + "/Sample";
System.out.println("binding " + url);

// register it with rmiregistry
Naming.rebind (url, new Sample()) ;

// Naming.rebind("Sample", new Sample());
System.out.println("server " + url + " is running...");

}
catch (Exception e) {
System.out.println ("Sample server failed:" +
e.getMessage()) ;

.

September 24, 2014 © 2014 Paul Krzyzanowski 24

/
®

Policy file

.

 When we run the server, we need to specify security
policies

« A security policy file specifies what permissions you grant
to the program

* This simple one grants all permissions

grant {
permission java.security.AllPermission;

};

September 24, 2014 © 2014 Paul Krzyzanowski 25

(

The client

.

* The first two arguments will contain the host & port
* Look up the remote function via the name server

* This gives us a handle to the remote method

SampleInterface sample = (SampleInterface)Naming.lookup (url) ;

 Call the remote method for each argument

sample.invert (args[i]));

* We have to be prepared for exceptions

September 24, 2014 © 2014 Paul Krzyzanowski

26

(Client code: part 1 (SampleClient.java)

public class SampleClient ({
public static void main(String args[]) {
try {
// basic argument count check
if (args.length < 3) {
System.err.println (
"usage: java SampleClient rmihost rmiport string... \n");

System.exit (1) ;
}

// args[0] contains the hostname, args[l] contains the port
int port = Integer.parselnt (args[l])

String url = "//" + args[0] + ":" + port + "/Sample";
System.out.println("looking up " + url);

// look up the remote object named “Sample”
SampleInterface sample = (SampleInterface)Naming.lookup (url) ;

.

September 24, 2014 © 2014 Paul Krzyzanowski 27

(Client code: part 2 (SampleClient.java)

// args[2] onward are the strings we want to reverse
for (int i=2; i < args.length; ++i)

// call the remote method and print the return
System.out.println(sample.invert (args[i]));

} catch (Exception e) {
System.out.println ("SampleClient exception: " + e);

}
}
}

.

September 24, 2014 © 2014 Paul Krzyzanowski

28

[

Compile

.

« Compile the interface and classes:

javac SampleInterface.java Sample.java
javac SampleServer. java

« And the client...
javac SampleClient. java

(you can do it all on one command: javac *.java)

* Note — Java used to use an RPC compiler
— Since Java 1.5, Java supports the dynamic generation of stub classes at runtime
— In the past, one had to use an RMI compiler, rmic
— If you want to, you can still use it but it's not needed

September 24, 2014 © 2014 Paul Krzyzanowski

29

Run

Start the object reqgistry (in the background):
rmiregistry 12345 &

— An argument overrides the default port 1099

Start the server (telling it the port of the rmi registry):
java -Djava.security.policy=policy SampleServer 12345

Run the client:
java SampleClient svrname 12345 testing abcdefgh

— Where svrname is the name of the server host
— 12345 is the port number of the name server: rmiregistry, not the service!

See the output:

gnitset
hgfedcba

.

SeémBPa Kr2pAahowski 30

_

RMI
A bit of the Internals

September 24, 2014 © 2014 Paul Krzyzanowski

31

-

Interfaces

.

 Interfaces define behavior
» Classes define implementation

 RMI: two classes support the same interface

— client stub
— server implementation

SeémBPa Kr2pAahowski

32

-
Three-layer architecture

[client program]

A

A 4

stub function(s)

remote reference layer

marshal stream

[server program]

A

A 4

skeleton
(server-stub)

remote reference layer

transport layer)

.

\ 4

transport layer

SeémBPa Kr2pAahowski

33

/

Server-1

.

« Server creates an instance of the server object
— extends UnicastRemoteObject
— TCP socket is bound to an arbitrary port number
— thread is created which listens for connections on that socket

« Server registers object
— RMI reqistry is an RMI server (accepts RMI calls)

— Hands the registry the client stub for that server object

« contains information needed to call back to the server
(hostname, port)

SeémBPa Kr2pAahowski

34

[
@

Client-1

.

* Client obtains stub from registry

 Clientissues aremote method invocation

— stub class creates a RemoteCall
» opens socket to the server on port specified in the stub
* sends RMI header information

— stub marshals arguments over the network connection
« uses methods on RemoteCall to obtain a subclass of ObjectOutputStream
« knows how to deal with objects that extend java.rmi.Remote
— serializes Java objects over socket

— stub calls RemoteCall.executeCall()
« causes the remote method invocation to take place

SeémBPa Kr2pAahowski

35

p

Server - 2

.

« Server accepts connection from client
« Creates a new thread to deal with the incoming request

 Reads header information
— creates RemoteCall to deal with unmarshaling RMI arguments

« Calls dispatch method of the server-side stub (skeleton)
— calls appropriate method on the object
— sends result to network connection via RemoteCall interface
— if server threw exception, that is marshaled instead of a return value

SeémBPa Kr2pAahowski

36

[.
Client - 2

 The client unmarshals the return value of the RMI
— using RemoteCall

* value Is returned from the stub back to the client code

.

— or an exception is thrown to the client if the return was an exception

SeémBPa Kr2pAahowski

37

_

The end

September 24, 2014

© 2014 Paul Krzyzanowski

38

