
Distributed Systems
03r. Part I: Homework Review

Paul Krzyzanowski

Rutgers University

Fall 2014

© 2014 Paul Krzyzanowski September 24, 2014 1

Question 1

What is the advantage of source snoop coherency behavior

compared to home snoop?

– This describes Intel’s support for NUMA (Non-Uniform Memory

Access) using their QuickPath Interconnect – a high-speed network

that connects processors in a multiprocessor system.

• Home agent = CPU that has a connection to the memory with the data

– Home agent keeps track of which CPU has the latest cached copy

• Caching agent = CPU that may have or wants a cached copy

September 24, 2014 © 2014 Paul Krzyzanowski 2

Question 1 discussion

• Goal is to make sure memory is coherent

– No processor will use out-of-date contents

• Home snoop

1. CPU that wants to read data contacts the home

agent for that memory location

2. Home agent sends a request to the CPU that

has the latest version

3. That CPU sends the update to (a) the

requesting CPU and (b) acknowledges the

home agent.

September 24, 2014 © 2014 Paul Krzyzanowski 3

CPU

1

CPU

2

CPU

3

CPU

4

Home Agent Caching Agent

1

2

CPU

1

CPU

2

CPU

3

CPU

4

Home Agent Caching Agent

3a

3b

New Caching Agent

4

Question 1 discussion

• Source snoop

1. CPU that wants to read data contacts all other

CPUs

2. That CPU sends the data to P1 &

acknowledgement to P4

3. P4 acknowledges the end of the transaction.

September 24, 2014 © 2014 Paul Krzyzanowski 4

CPU

1

CPU

2

CPU

3

CPU

4

Home Agent Caching Agent

1

CPU

1

CPU

2

CPU

3

CPU

4

Home Agent Caching Agent

2

New Caching Agent

3

1

1

2

Question 1

(a) What is the advantage of source snoop coherency

behavior compared to home snoop?

• Answer:

– The caching agent (the CPU that wants the data) sends requests to

the home agent and all other caching agents.

– The caching agent with the data responds directly to the requestor.

Two network hops instead of three to get the data.

(b) What is the downside?

– The technique uses more bandwidth because requests are sent to

all processors

September 24, 2014 © 2014 Paul Krzyzanowski 5

Question 2

What are three techniques used to reduce load on a

system?

1. Replication

– Multiple servers can handle the same request

– Distributes load

2. Distribution

– Different servers are responsible for different tasks

3. Caching

– Save previous results: avoid contacting a server

September 24, 2014 © 2014 Paul Krzyzanowski 6

Question 3

"Fate-sharing" is a key facet of the Internet's end-to-end

principle.

What is meant by the term fate-sharing?

• It is acceptable to lose the state information associated

with an entity if, at the same time, the entity itself is lost.

• Example

– It is OK to lose the TCP connection if the client or server dies

– It is NOT OK to lose the TCP connection if a router in the network

dies

September 24, 2014 © 2014 Paul Krzyzanowski 7

Question 4

What is the end-to-end principle in networking?

• Application-specific functions ought to reside in the end

hosts of a network rather than in intermediary nodes –

provided they can be implemented "completely and

correctly" in the end hosts.

• Example

– TCP provides reliable, in-order data delivery over an unreliable

network

– All the logic to do this is at the “ends” – the computers

– Routers implement only what they have to: moving packets

September 24, 2014 © 2014 Paul Krzyzanowski 8

Question 5

• Paper: Distributed Garbage Collection for Network Objects

• a proposal is introduced for managing remote object
references

– a server maintains a dirty set per object: a list of active remote
references to a particular object.

– When a local garbage collector at a client determines that the client
has no more references to a remote object, it sends a clean message
to the server to remote the reference from the dirty set.

• One snag is the situation where one process, A, passes an
object reference to another process, B. It is possible that the
garbage collector on A will send a clean message to the server
before B's dirty message is received.

• Explain how this situation is handled. Assume neither process
A nor process B is the owner of the object. A simply passes the
object reference to B.

September 24, 2014 © 2014 Paul Krzyzanowski 9

Question 5

• Question summary:

1. A sends a reference for a remote object to B.

2. A doesn't need it anymore so it tells the server that it has no

references (clean).

3. B receives the object reference and tells the server that it has a

reference (dirty).

– If the server gets rid of the object after step 2, it's gone and B

cannot access it.

• How do we fix this?

• Process A will NOT send a clean message to the server

until it first gets an acknowledgement that B received the

object and sent a dirty message to the server

September 24, 2014 © 2014 Paul Krzyzanowski 10

Distributed Systems
03r. Part 2: Java RMI Programming Tutorial

Paul Krzyzanowski

Rutgers University

Fall 2013

© 2014 Paul Krzyzanowski September 24, 2014 11

Java RMI

• Allows a method to be invoked that resides on a different

JVM (Java Virtual Machine):

– Either a remote machine

– Or same machine, different processes

• Each process runs on a different Java Virtual Machines (JVM)

• Different address space per process/JVM

• RMI provides object-oriented RPC

© 2014 Paul Krzyzanowski September 24, 2014 12

© 2014 Paul Krzyzanowski

Participating processes

• Client

– Process that is invoking a method on a remote object

• Server

– Process that owns the remote object

– To the server, this is a local object

• Object Registry (rmiregistry)

– Name server that associates objects with names

– A server registers an object with rmiregistry

– URL namespace
 rmi://hostname:port/pathname

 e.g.: rmi://crapper.pk.org:12345/MyServer

Port number

September 24, 2014 13

Classes & Interfaces needed for Java RMI

• Remote: for accessing remote methods

– Used for remote objects

• Serializable: for passing parameters to remote methods

– Used for parameters

• Also needed:

– RemoteException: network or RMI errors can occur

– UnicastRemoteObject: used to export a remote object reference or

obtain a stub for a remote object

– Naming: methods to interact with the registry

© 2014 Paul Krzyzanowski September 24, 2014 14

Remote class

• Remote class (remote object)

– Instances can be used remotely

– Works like any other object locally

– In other address spaces, object is referenced with an object handle

• The handle identifies the location of the object

– If a remote object is passed as a parameter, its handle is passed

© 2014 Paul Krzyzanowski September 24, 2014 15

© 2014 Paul Krzyzanowski

Serializable interface

• java.io.Serializable interface (serializable object)

– Allows an object to be represented as a sequence of bytes

(marshaled)

– Allows instances of objects to be copied between address spaces

• Can be passed as a parameter or be a return value to a remote object

• Value of object is copied (pass by value)

– Any objects that may be passed as parameters should be defined

to implement the java.io.Serializable interface

• Good news: you rarely need to implement anything

• All core Java types already implement the interface

• For your classes, the interface will serialize each variable iteratively

September 24, 2014 16

Remote classes

• Classes that will be accessed remotely have two parts:

1. interface definition

2. class definition

• Remote interface

– This will be the basis for the creation of stub functions

– Must be public

– Must extend java.rmi.Remote

– Every method in the interface must declare that it throws
 java.rmi.RemoteException

• Remote class

– implements Remote interface

– extends java.rmi.server.UnicastRemoteObject

© 2014 Paul Krzyzanowski September 24, 2014 17

© 2014 Paul Krzyzanowski

Super-simple example program

• Client invokes a remote method with strings as parameter

• Server returns a string containing the reversed input

string and a message

September 24, 2014 18

Define the remote interface

© 2014 Paul Krzyzanowski

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface SampleInterface extends Remote {

 public String invert(String msg) throws RemoteException;

}

• Interface is public

• Extends the Remote interface

• Defines methods that will be accessed remotely

– We have just one method here: invert

• Each method must throw a RemoteException

– In case things go wrong in the remote method invocation

SampleInterface.java

September 24, 2014 19

Define the remote class (Sample.java)

© 2014 Paul Krzyzanowski

import java.rmi.Remote;

import java.rmi.RemoteException;

import java.rmi.server.*;

public class Sample

 extends UnicastRemoteObject

 implements SampleInterface {

 public Sample() throws RemoteException { }

 public String invert(String m) throws RemoteException {

 // return input message with characters reversed

 return new StringBuffer(m).reverse().toString();

 }

}

• Defines the implementation of the remote methods

• It implements the interface we defined

• It extends the java.rmi.server.UnicastRemoteObject class

– Defines a unicast remote object whose references are valid only

while the server process is alive.

September 24, 2014 20

Next…

• We now have:

– The remote interface definition: SampleInterface.java

– The server-side (remote) class: Sample.java

• Next, we’ll write the server: SampleServer.java

• Two parts:

1. Create an instance of the remote class

2. Register it with the name server (rmiregistry)

© 2014 Paul Krzyzanowski September 24, 2014 21

Server code (SampleServer.java)

• Create the object

• Register it with the name server (rmiregisty)

• rmiregistry runs on the server

– The default port is 1099

– The name is a URL format and can be prefixed with a hostname
and port: “//localhost:1099/Server”

© 2014 Paul Krzyzanowski

new Sample()

Naming.rebind("Sample”, new Sample())

September 24, 2014 22

Server code: part 1 (SampleServer.java)

© 2014 Paul Krzyzanowski

import java.rmi.Naming;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

public class SampleServer {

 public static void main(String args[]) {

 if (args.length != 1) {

 System.err.println("usage: java SampleServer rmi_port");

 System.exit(1);

 }

September 24, 2014 23

Server code: part 2 (SampleServer.java)

© 2014 Paul Krzyzanowski

 try {

 // first command-line arg: the port of the rmiregistry

 int port = Integer.parseInt(args[0]);

 // create the URL to contact the rmiregistry

 String url = "//localhost:" + port + "/Sample";

 System.out.println("binding " + url);

 // register it with rmiregistry

 Naming.rebind(url, new Sample());

 // Naming.rebind("Sample", new Sample());

 System.out.println("server " + url + " is running...");

 }

 catch (Exception e) {

 System.out.println("Sample server failed:" +

 e.getMessage());

 }

 }

}

September 24, 2014 24

Policy file

• When we run the server, we need to specify security

policies

• A security policy file specifies what permissions you grant

to the program

• This simple one grants all permissions

© 2014 Paul Krzyzanowski

grant {

 permission java.security.AllPermission;

};

September 24, 2014 25

The client

• The first two arguments will contain the host & port

• Look up the remote function via the name server

• This gives us a handle to the remote method

• Call the remote method for each argument

• We have to be prepared for exceptions

© 2014 Paul Krzyzanowski

 SampleInterface sample = (SampleInterface)Naming.lookup(url);

sample.invert(args[i]));

September 24, 2014 26

Client code: part 1 (SampleClient.java)

© 2014 Paul Krzyzanowski

public class SampleClient {

 public static void main(String args[]) {

 try {

 // basic argument count check

 if (args.length < 3) {

 System.err.println(

 "usage: java SampleClient rmihost rmiport string... \n");

 System.exit(1);

 }

 // args[0] contains the hostname, args[1] contains the port

 int port = Integer.parseInt(args[1]);

 String url = "//" + args[0] + ":" + port + "/Sample";

 System.out.println("looking up " + url);

 // look up the remote object named “Sample”

 SampleInterface sample = (SampleInterface)Naming.lookup(url);

September 24, 2014 27

Client code: part 2 (SampleClient.java)

© 2014 Paul Krzyzanowski

 // args[2] onward are the strings we want to reverse

 for (int i=2; i < args.length; ++i)

 // call the remote method and print the return

 System.out.println(sample.invert(args[i]));

 } catch(Exception e) {

 System.out.println("SampleClient exception: " + e);

 }

 }

}

September 24, 2014 28

Compile

• Compile the interface and classes:

 javac SampleInterface.java Sample.java
 javac SampleServer.java

• And the client…

 javac SampleClient.java

(you can do it all on one command: javac *.java)

• Note – Java used to use an RPC compiler

– Since Java 1.5, Java supports the dynamic generation of stub classes at runtime

– In the past, one had to use an RMI compiler, rmic

– If you want to, you can still use it but it’s not needed

© 2014 Paul Krzyzanowski September 24, 2014 29

© 2014 Paul Krzyzanowski

Run

• Start the object registry (in the background):

 rmiregistry 12345 &

– An argument overrides the default port 1099

• Start the server (telling it the port of the rmi registry):
 java -Djava.security.policy=policy SampleServer 12345

• Run the client:

 java SampleClient svrname 12345 testing abcdefgh
– Where svrname is the name of the server host

– 12345 is the port number of the name server: rmiregistry, not the service!

• See the output:

 gnitset
 hgfedcba

September 24, 2014 30

RMI

A bit of the internals

© 2014 Paul Krzyzanowski September 24, 2014 31

© 2014 Paul Krzyzanowski

Interfaces

• Interfaces define behavior

• Classes define implementation

• RMI: two classes support the same interface

– client stub

– server implementation

September 24, 2014 32

© 2014 Paul Krzyzanowski

Three-layer architecture

client program server program

stub function(s)
skeleton

(server-stub)

remote reference layer remote reference layer

transport layer transport layer

marshal stream

September 24, 2014 33

© 2014 Paul Krzyzanowski

Server - 1

• Server creates an instance of the server object

– extends UnicastRemoteObject

– TCP socket is bound to an arbitrary port number

– thread is created which listens for connections on that socket

• Server registers object

– RMI registry is an RMI server (accepts RMI calls)

– Hands the registry the client stub for that server object

• contains information needed to call back to the server

(hostname, port)

September 24, 2014 34

© 2014 Paul Krzyzanowski

Client - 1

• Client obtains stub from registry

• Client issues a remote method invocation

– stub class creates a RemoteCall

• opens socket to the server on port specified in the stub

• sends RMI header information

– stub marshals arguments over the network connection

• uses methods on RemoteCall to obtain a subclass of ObjectOutputStream

• knows how to deal with objects that extend java.rmi.Remote

– serializes Java objects over socket

– stub calls RemoteCall.executeCall()

• causes the remote method invocation to take place

September 24, 2014 35

© 2014 Paul Krzyzanowski

Server - 2

• Server accepts connection from client

• Creates a new thread to deal with the incoming request

• Reads header information

– creates RemoteCall to deal with unmarshaling RMI arguments

• Calls dispatch method of the server-side stub (skeleton)

– calls appropriate method on the object

– sends result to network connection via RemoteCall interface

– if server threw exception, that is marshaled instead of a return value

September 24, 2014 36

© 2014 Paul Krzyzanowski

Client - 2

• The client unmarshals the return value of the RMI

– using RemoteCall

• value is returned from the stub back to the client code

– or an exception is thrown to the client if the return was an exception

September 24, 2014 37

The end

© 2014 Paul Krzyzanowski September 24, 2014 38

