Operating Systems Design
24. Windowing
Paul Krzyzanowski
psk@cs.rutgers.edu

User Interfaces: 1st Generation

Historically, the \textit{command-line interface}

\begin{verbatim}
cat *.txt | tr -cs "[:alpha:]" "\n" |
tr A-Z a-z | sed '/^$/d' |
sort | uniq -c | sort -nr
\end{verbatim}

User Interfaces: 2nd Generation

Most users prefer a graphical UI

- Dominant interface:
 - desktop metaphor
 - WIMP (Window, Icon, Menu, Pointer) design paradigm
 - 1964-1968: Douglas Engelbart
 - 1968 demo: mouse, windows, hypermedia links, video teleconferencing
 - 1973: Xerox Alto – PC with GUI, folders, mouse, keyboard

WIMP

User Interfaces: 3rd Generation

- Touch (& multitouch) interactive
 - no windows, mouse, pointer
 - Jeff Han, NYU: Multitouch sensing, 2006
 - huge mindshare due to the popularity of the iPhone & iPad

Hardware for graphics

- Fundamental interface
 - Framebuffer
 - Memory buffer containing a video frame
 - Memory mapped into system’s memory space
 - Graphics accelerator (GPU)
 - Send drawing commands to the GPU, which rasterizes the results onto a framebuffer
 - Abstraction libraries: OpenGL, DirectX/Direct3D
 - Provide a uniform interface for hardware graphics
 - Translate commands into GPU-specific commands
 - GPUs are multithreaded, driver may control thread scheduling
 - GPU’s results are sent to the framebuffer

© 2012 Paul Krzyzanowski
Windowing System
- Interfaces with mice, keyboards, cursor, & graphics HW
- Provides virtual interfaces to processes
 - Virtual screen (framebuffer)
 - Virtual keyboard
 - Virtual mouse

Window System

Virtual desktop
- Large virtual desktop (64K x 64K)
- Portions are mapped to monitors through views

X Window System (X11)
- Window system
 - User-level interface to hardware
 - Manages graphics card, keyboard, and mouse
 - I/O multiplexing
 - Client-server API
 - Create/destroy windows
 - Basic drawing (text, lines, fills) commands into windows

Windows Display Driver Model
- Virtual video memory (memory protection)
- GPU thread scheduling
- Lots of rendering APIs
 - Legacy: DirectDraw, Direct3D (3..8)
 - Mainline: GDI, Direct3D 9/9Ex, OpenGL
 - New: Direct3D 10, Windows Presentation Foundation
- Separate rendering from device management
 - Direct3D 10 manages graphics
 - DXGI component manages
 - Adapters, display modes, output, gamma/color, monitor controls
- Desktop Window Manager
 - Composited desktop

Kernel Interface: Windows ≥ Vista
Windows Display Driver Model (WDDM)
- Direct3D 10 manages graphics
- DXGI component manages
 - Adapters, display modes, output, gamma/color, monitor controls

Window Manager
- Handles interactions between windows, applications, and the underlying windowing system
- Does not interact with the hardware
- Stacking (floating) window manager
 - Draws windows in a specific order (sorted by z-order)
 - Allows overlapping windows by drawing background windows first
 - Contents have to be redrawn when window new parts exposed
 - Limited ability to accelerate with a graphics card
- Compositing window manager
 - Windows drawn separately. Graphics HW places them in a 2D or 3D environment
 - OS X, Vista and Windows 7 use this
- Hybrid: treat foreground window differently: have graphics card render it
X Windows

- **X Server**
 - Provides mechanism, not policy
 - Provide windows, drawing primitives, cut buffers, text rendering

- **Window manager**
 - Application that runs on X
 - Controls the placement & appearance of windows, icons, …
 - fvwm, 3dwm, afterstep, Window Maker, Enlightenment, …

- **Widget Libraries (Toolkits, APIs)**
 - Common UI components: scrollbars, sliders, dialog boxes, …
 - GTK, Qt, LessTif

- **Desktop environments**
 - Window manager + applications to provide consistent UI (program launchers, …)
 - GNOME, KDE, Software Compilation, CDE, …