
CS 416: Operating Systems Design March 30, 2015

© 2014-2015 Paul Krzyzanowski 1

Operating Systems

15. File System Implementation

Paul Krzyzanowski

Rutgers University

Spring 2015

1 3/30/2015 © 2014-2015 Paul Krzyzanowski

Log Structured File Systems

3/30/2015 © 2014-2015 Paul Krzyzanowski 2

NAND flash memory

• Memory arranged in “pages” – similar to disk blocks

– Unit of allocation and programming

– Individual bytes cannot be written

• You cannot just write to a block of flash memory

– It has to be erased first

– Read-erase-write may be 50…100x slower than writing to an

already-erased block!

• Limited erase-write cycles

– ~100,000 to 1,000,000 cycles

– Employ wear leveling to distribute writes among all (most) blocks

– Bad block “retirement”

3 © 2014-2015 Paul Krzyzanowski 3/30/2015

Problems with conventional file systems

• Modify the same blocks over and over

– At odds with NAND flash performance

– Have to rely on FTL or smart controller

• Optimizations to minimize seek time

– Spatial locality is meaningless with flash memory

4 © 2014-2015 Paul Krzyzanowski 3/30/2015

Wear leveling

• Dynamic wear leveling

– Monitors erase count of blocks

– Map logical block addresses to flash memory block addresses

– When a block of data is written to flash memory,

• Write to a free block with the lowest erase count

• Update logical → physical block map

– Blocks that are never modified will not get reused

• Static wear leveling

– Copy static data with low erase counts to another block so the

original block can be reused

– Usually triggered when the (maximum-minimum) erase cycles

reaches a threshold

5 © 2014-2015 Paul Krzyzanowski 3/30/2015

Our options with NAND flash memory

1. NAND flash with a flash memory controller

– Handles block mapping (logical → physical)

• Block Lookup Table

– Employs wear leveling: usually static and dynamic

– Asynchronous garbage collection and erasing

– Can use conventional file systems – transparent to software

2. Flash Translation Layer (FTL)

– Software layer between flash hardware & a block device

– Microsoft’s term: Flash Abstraction Layer (FAL) – sits on top of Flash Media Driver

– Rarely used now – moved to firmware (1)

3. OS file system software optimized for raw flash storage

– Write new blocks instead of erasing & overwriting an old one

– Erase the old blocks later

6 © 2014-2015 Paul Krzyzanowski 3/30/2015

CS 416: Operating Systems Design March 30, 2015

© 2014-2015 Paul Krzyzanowski 2

Log-Structured file systems

• Designed for wear-leveling

• Entire file system is essentially a log of operations

– Some operations update older operations

– Blocks containing the older operations can be reclaimed

© 2014-2015 Paul Krzyzanowski 7 3/30/2015

File systems designed for wear leveling

UBIFS, YAFFS2, LogFS, JFFS2 , and others

– JFFS2 is favored for smaller disks

• Used in low-capacity embedded systems

– YAFFS2 is favored for disks > 64 MB

• Android used YAFFS2 for /system and /data [through v2.3]

and VFAT for /sdcard

– UBIFS (Unsorted Block Image File System)

• Successor to YAFFS2; designed to shorten mounting time & memory needs

– LogFS

• Short mounting time as in UBIFS – competes with UBIFS

• Supports compression

8 © 2014-2015 Paul Krzyzanowski 3/30/2015

Supports static wear

leveling

Supports dynamic wear

leveling

Supports static wear

leveling

YAFFS

• Stores objects

– Files, directories, hard links, symbolic links, devices

– Each object has a unique integer object ID

• inodes & directory entries (dentries)

• Unit of allocation = “chunk”

• Several (32 … 128+) chunks = 1 block

– Unit of erasure for YAFFS

© 2014-2015 Paul Krzyzanowski 9 3/30/2015

YAFFS

Log structure: all updates written sequentially

• Each log entry is 1 chunk in size:

– Data chunk

– or Object header (describes directory, file, link, etc.)

• Sequence numbers are used to organize a log

chronologically

• Each chunk contains:

– Object ID: object the chunk belongs to

– Chunk ID: where the chunk belongs in the file

– Byte count: # bytes of valid data in the chunk

10 © 2014-2015 Paul Krzyzanowski 3/30/2015

YAFFS

Create a file

Adapted from http://www.yaffs.net/files/yaffs.net/HowYaffsWorks.pdf

B
lo

c
k
 1

Chunk ObjectId ChunkID

Object header for file (length=0) Live 0 500 0

1

2

3

11 © 2014-2015 Paul Krzyzanowski 3/30/2015

YAFFS

Write some data to the file

Adapted from http://www.yaffs.net/files/yaffs.net/HowYaffsWorks.pdf

B
lo

c
k
 1

Chunk ObjectId ChunkID

Object header for file (length=0) Live 0 500 0

First chunk of data Live 1 500 1

Second chunk of data Live 2 500 2

Third chunk of data Live 3 500 3

12 © 2014-2015 Paul Krzyzanowski 3/30/2015

CS 416: Operating Systems Design March 30, 2015

© 2014-2015 Paul Krzyzanowski 3

YAFFS

Close the file: write new header

Adapted from http://www.yaffs.net/files/yaffs.net/HowYaffsWorks.pdf

B
lo

c
k
 1

Chunk ObjectId ChunkID

Object header for file (length=0) Deleted 0 500 0

First chunk of data Live 1 500 1

Second chunk of data Live 2 500 2

Third chunk of data Live 3 500 3

Object header for file (length=n) Live 0 500 0

B
lo

c
k
 2

13 © 2014-2015 Paul Krzyzanowski 3/30/2015

YAFFS

Open file; modify first chunk; close file

Adapted from http://www.yaffs.net/files/yaffs.net/HowYaffsWorks.pdf

B
lo

c
k
 1

Chunk ObjectId ChunkID

Object header for file (length=0) Deleted 0 500 0

First chunk of data Deleted 1 500 1

Second chunk of data Live 2 500 2

Third chunk of data Live 3 500 3

Object header for file (length=n) Deleted 0 500 0

New first chunk of data Live 1 500 1

New object header for file (length=n) Live 2 500 0

B
lo

c
k
 2

14 © 2014-2015 Paul Krzyzanowski 3/30/2015

YAFFS Garbage Collection

• If all chunks in a block are deleted

– The block can be erased & reused

• If blocks have some free chunks

– We need to do garbage collection

– Copy active chunks onto other blocks so we can free a block

• Passive collection: pick blocks with few used chunks

• Aggressive collection: try harder to consolidate chunks

15 © 2014-2015 Paul Krzyzanowski 3/30/2015

YAFFS in-memory structures

Construct file system state in memory

• Map of in-use chunks

• In-memory object state for each object

• File tree/directory structure to locate objects

• Scan the log backwards chronologically

 highest→lowest sequence numbers

• Checkpointing: save the state of these structures at unmount

time to speed up the next mount

16 © 2014-2015 Paul Krzyzanowski 3/30/2015

YAFFS error detection/correction

• ECC used for error recovery

– Correct 1 bad bit per 256 bytes

– Detect 2 bad bits per 256 bytes

– Bad blocks:

 if read or write fails, ask driver to mark the block as bad

17 © 2014-2015 Paul Krzyzanowski 3/30/2015

UBIFS vs YAFFS

• Entire file system state does not have to be stored in

memory

• Challenge

– Index has to be updated out-of-place

– Parts that refer to updated areas have to also be updated

• UBIFS wandering tree (B+ Tree)

– Only leaves contain file information

– Internal nodes = index nodes

• Update to FS

– Create leaf; add/replace into wandering tree

– Update parent index nodes up to the root

3/30/2015 © 2014-2015 Paul Krzyzanowski 18

CS 416: Operating Systems Design March 30, 2015

© 2014-2015 Paul Krzyzanowski 4

Special file systems

3/30/2015 © 2014-2015 Paul Krzyzanowski 19

Pseudo devices

• Device drivers can also provide custom functions

– Even if there is no underlying device

© 2014-2015 Paul Krzyzanowski 20 3/30/2015

Simple special-function device files

• /dev/null Null device

– Throw away anything written to it; return EOF on reads

• /dev/zero Zero device

– Return zeros for each read operation

• /dev/random, /dev/urandom Random numbers

– urandom is non-blocking

– \Device\KsecDD on Windows NT

© 2014-2015 Paul Krzyzanowski 21 3/30/2015

Loop pseudo device

• Provides a block device interface to a file

– Register file as a block device

– Let the buffer cache know:

• request (strategy) procedure for read/write

• block size

• The file can then be formatted with a file system and mounted

– See the losetup command in Linux

• Common uses

– installation software

– CD/DVD images

– Encrypted file systems

© 2014-2015 Paul Krzyzanowski 22 3/30/2015

Loop device

System calls

VFS

iso9660 fs driver

Buffer cache

Loop device driver

ext4 fs driver

SATA driver

Example: Access an ISO 9660 CD image on a file sitting in an ext4 file system

© 2014-2015 Paul Krzyzanowski 23 3/30/2015

Example: (1) Create a loop device

Create a 10MB file named file.img

dd if=/dev/zero of=file.img bs=1k count=10000

10000+0 records in

10000+0 records out

Associate loop device /dev/loop0 with the file file.img

losetup /dev/loop0 file.img

This makes /dev/loop0 a block device whose contents are file.img

ls -l /dev/loop0

brw-rw---- 1 root disk 7, 0 Mar 30 10:55 /dev/loop0

© 2014-2015 Paul Krzyzanowski 24 3/30/2015

CS 416: Operating Systems Design March 30, 2015

© 2014-2015 Paul Krzyzanowski 5

Example: (2) Put a file system on the file

Create a file system on /dev/loop0

mke2fs -c /dev/loop0 10000

mke2fs 1.42.9 (4-Feb-2014)

Discarding device blocks: done

Filesystem label=

OS type: Linux

Block size=1024 (log=0)

Fragment size=1024 (log=0)

Stride=0 blocks, Stripe width=0 blocks

2512 inodes, 10000 blocks

...

© 2014-2015 Paul Krzyzanowski 25 3/30/2015

Example: (3) Mount it

Create a directory that will be the mount point

mkdir /mnt/here

Mount the file system
mount -t ext2 /dev/loop0 /mnt/here

Test it out!

ls -l /mnt/here

total 12

drwx------ 2 root root 12288 Mar 30 10:56 lost+found

echo hello >/mnt/here/hello.txt

ls -l /mnt/here

total 13

-rw-r--r-- 1 root root 6 Mar 30 14:31 hello.txt

drwx------ 2 root root 12288 Mar 30 10:56 lost+found

cat /mnt/here/hello.txt

hello

file.img

/mnt/here

© 2014-2015 Paul Krzyzanowski 26 3/30/2015

Example: Do it recursively!

Create a 1000KB file called another.img within the file.img file system

dd if=/dev/zero of=/mnt/here/another.img bs=1k count=1000

1000+0 records in

1000+0 records out

Make /dev/loop1 be a loop device that points to another.img

losetup /dev/loop1 /mnt/here/another.img

Create a file system

mke2fs -c /dev/loop1 1000

mke2fs 1.42.9 (4-Feb-2014)

Filesystem label=

OS type: Linux

Block size=1024 (log=0)

Fragment size=1024 (log=0)

Stride=0 blocks, Stripe width=0 blocks

128 inodes, 1000 blocks

...

another.img is a file containing a file system

It exists within file.img, which is also a file

containing a file system

© 2014-2015 Paul Krzyzanowski 27 3/30/2015

Example: Do it recursively!

Create a directory (/mnt/there) that will be the mount point

mkdir /mnt/there

mount the file system

mount -t ext2 /dev/loop1 /mnt/there

Test it!

echo hey! >/mnt/there/test

ls -l /mnt/there

total 13

drwx------ 2 root root 12288 Mar 30 14:35 lost+found

-rw-r--r-- 1 root root 5 Mar 30 14:36 test

It works! another.img is a file system within file.img which is a file system on the disk

ls -l /mnt/here

total 1018

-rw-r--r-- 1 root root 1024000 Mar 30 14:35 another.img

-rw-r--r-- 1 root root 6 Mar 30 14:31 hello.txt

drwx------ 2 root root 12288 Mar 30 10:56 lost+found

/mnt/there/text:

File in a file system (/mnt/there)

that is a file (another.img)

within a file system (/mnt/here)

that is a file (file.img)

within a file system (top-level)

© 2014-2015 Paul Krzyzanowski 28 3/30/2015

Generic Interfaces via VFS

VFS gives us a generic interface to file operations

– We don’t need to have persistent storage underneath

… or even storage!

© 2014-2015 Paul Krzyzanowski 29 3/30/2015

procfs: process file system

• /proc

– View & control processes & kernel structures as files

• Origins: Plan 9 from Bell Labs

– Look into and control processes

• procfs is a file system driver

– Registers itself with VFS

– When VFS calls to request inodes as files & directories are

accessed, /proc creates them from info within kernel structures.

© 2014-2015 Paul Krzyzanowski 30 3/30/2015

CS 416: Operating Systems Design March 30, 2015

© 2014-2015 Paul Krzyzanowski 6

procfs: process file system

• Remove the need for system calls to get info, read config

parameters, and inspect processes

• Simplify scripting

• Just a few items:
– /proc/cpuinfo info about the cpu

– /proc/devices list of all character & block devices

– /proc/diskstats info on logical disks

– /proc/meminfo info on system memory

– /proc/net directory containing info on the network stack

– /proc/swaps list of swap partitions

– /proc/uptime time the system has been up

– /proc/version kernel version

• Plan 9 allowed remote access to /proc

© 2014-2015 Paul Krzyzanowski 31 3/30/2015

procfs: process info

$ ls /proc/27325

attr cwd loginuid oom_adj smaps

auxv environ maps oom_score stack

cgroup exe mem pagemap stat

clear_refs fd mountinfo personality statm

cmdline fdinfo mounts root status

comm io mountstats sched syscall

coredump_filter latency net schedstat task

cpuset limits numa_maps sessionid wchan

© 2014-2015 Paul Krzyzanowski 32 3/30/2015

Naming Devices

3/30/2015 © 2014-2015 Paul Krzyzanowski 33

Device Names in Windows

• Windows Object Manager

– Owns the system namespace

– Manages Windows resources: devices, files, registry entries,

processes, memory, …

– Programs can look up, share, protect, and access resources

– Resource access is dedicated to the appropriate subsystem

• I/O Manager gets requests to parse & access file names

• When a device driver is loaded by the kernel

– Driver init routine registers a device name with the Object Manager

• \Device\CDRom0, \Device\Serial0

– Win32 API requires MS-DOS device names

• Names also live in the Object Manager

• Created as symbolic links in the \?? directory

3/30/2015 © 2014-2015 Paul Krzyzanowski 34

Devices in Linux & OS X

• In the past: Devices were static; explicitly created via mknod

• Now: Devices come & go

• devfs: special file system mounted on /dev

– Presents device files

– Device driver registers with devfs upon initialization via devfs_register

– Avoids having to create device special files in /dev

– Obsolete since Linux 2.6; still used in OS X and others

• udev device manager

– User level process; listens to uevents from the kernel via a netlink socket

• Detect new device initialization or removal

– Persistent device naming – guided by files in /etc/udev/rules.d

© 2014-2015 Paul Krzyzanowski 35 3/30/2015

FUSE: Filesystem in Userspace

• File system can run as a normal user process

• FUSE module

– Conduit to pass data between VFS and user process

– Communication via a special file descriptor obtained by

opening /dev/fuse

© 2014-2015 Paul Krzyzanowski 36 3/30/2015

CS 416: Operating Systems Design March 30, 2015

© 2014-2015 Paul Krzyzanowski 7

Thoughts on naming: Plan 9

• Plan 9 from Bell Labs

– Research OS built as a successor to UNIX

– Take the good ideas from UNIX; get rid of the bad ones

• The hierarchical name space was a good thing

 … so were devices as files

– User-friendly: easy to inspect & understand

– Great for scripting

• Conventions work well

– Binaries in /bin, Libraries in /lib, include files in /include, …

– Global conventions make life easier: no PATH

• Customization is good too

– But need alternative to PATH, LD_LIBRARY_PATH, other paths

© 2014-2015 Paul Krzyzanowski 37 3/30/2015

Thoughts on naming: Plan 9

• No “file system” – just a protocol for accessing data

• Devices are drivers that interpret a file access protocol

– Console: /dev/cons

– Clock: /dev/time

– Disk: /dev/disk/1

– Process 1’s memory map: /proc/1/mem

• Build up a name space by mounting various components

– Name space is not system wide but per process group

– Inherited across fork/exec

© 2014-2015 Paul Krzyzanowski 38 3/30/2015

Thoughts on naming: Plan 9

• Mounting directories & union mounts

– Multiple directories mounted on one place

– Behave like one directory comprising union of contents

– Order matters: acts like PATH

– E.g., /bin is built up of

• Shell scripts, architecture-specific binaries, your scripts, your other stuff

– A shell profile starts of by building up your workspace

• Window system – devices per process group

– /dev/cons – standard input, output

– /dev/mouse

– /dev/bitblt – bitmap operations

– /dev/screen – read/only image of the screen

– /dev/window – read/only image of the current window

© 2014-2015 Paul Krzyzanowski 39 3/30/2015

The End

3/30/2015 40 © 2014-2015 Paul Krzyzanowski

