Page translation

- Page number, p
- Displacement (offset), d
- f = page_table[p]

CPU

- Logical address
- Physical address
- Page Table Entry (PTE)
- Page Frame

Operating Systems

10. Memory Management – Part 2

Paging

Paul Krzyzanowski
Rutgers University
Spring 2015

Page table

- One page table per process
 - Contains page table entries (PTEs)
- Each PTE contains
 - Corresponding page frame # for a page #
 - Permissions
 - Access flags
 - Valid?
 - Modified?
 - Referenced?
- Page table is selected by setting a page table base register with the address of the table

Page-Based Virtual Memory Benefits

- Allow discontiguous allocation
 - Simplify memory management for multiprogramming
 - MMU gives the illusion of contiguous allocation of memory
- Process can get memory anywhere in the address space
 - Allow a process to feel that it has more memory than it really has
 - Process can have greater address space than system memory
- Enforce memory Protection
 - Each process' address space is separate from others
 - MMU allows pages to be protected:
 - Writing, execution, kernel vs. user access

Accessing memory

- CPU starts in physical addressing mode
 - Someone has to set up page tables
 - Divide address space into user & kernel spaces
 - Switch to Virtual addressing mode
- Each process makes virtual address references for all memory access
- MMU converts to physical address via a per-process page table
 - Page number → Page frame number
 - Page fault trap if not a valid reference

Improving look-up performance: TLB

- Cache frequently-accessed pages
 - Translation lookaside buffer (TLB)
 - Associative memory: key (page #) and value (frame #)
- TLB is on-chip & fast … but small (64 – 1,024 entries)
- TLB miss: result not in the TLB
 - Need to do page table lookup in memory
- Hit ratio = % of lookups that come from the TLB
- Address Space Identifier (ASID): share TLB among address spaces
Kernel's view of memory

- A process sees a flat linear address space
 - Accessing regions of memory mapped to the kernel causes a page fault
- Kernel's view:
 - Address space is split into two parts
 - User part: changes with context switches
 - Kernel part: remains constant across context switches
 - Split is configurable:
 - 32-bit x86: PAGE_OFFSET: 3 GB for process + 1 GB kernel

Sample memory map per process

- Process memory (context-specific) (3 GB)
- Kernel memory (1 GB)
- Process memory (context-specific) (3 GB)
- Kernel memory (2 GB)
- Interrupt stack
- Heap
- Code
- Data

Multilevel (Hierarchical) page tables

- Most processes use only a small part of their address space
- Keeping an entire page table is wasteful
 - 32-bit system with 4KB pages: 20-bit page table
 - \(2^{20} = 1,048,576\) entries in a page table

Multilevel page table

Virtual memory makes memory sharing easy

- Sharing is by page granularity
- Shared library or Shared memory

Virtual memory makes memory sharing easy

- Sharing is by page granularity
- Keep reference counts!
Copy on write

- Share until a page gets modified
- Example: fork()
 - Set all pages to read-only
 - Trap on write
 - If legitimate write
 - Allocate a new page and copy contents from the original

MMU Example: ARM

ARMv7-A architecture

- Cortex-A8
 - iPhone 3GS, iPod Touch 3G, Apple A4 processor in iPhone 4 & iPad, Droid X, Droid 2, etc.
- Cortex-A9
 - Multicore support
 - TI OMAP 44xx series, Apple A5 processor in iPad 2
- Apple A6
 - 32-bit AMD Cortex-A15 processor
 - Used in iPhone 5, 5C, 4th gen iPad
- Apple A7
 - 64-bit ARMv8-A architecture
 - Used in iPhone 5S, 2nd gen iPad mini, iPad Air

Pages

Four page (block) sizes:
- Supersections: 16MB memory blocks
- Sections: 1MB memory blocks
- Large pages: 64KB memory blocks
- Small pages: 4KB memory blocks

Two levels of tables

- First level table (aka translation tables)
 - Base address, descriptors, and translation properties for sections and supersections (1 MB & 16 MB blocks)
 - Translation properties and pointers to a second level table for large and small pages (4 KB and 64 KB pages)
- Second level tables (aka page tables)
 - Each contains base address and translation properties for small and large pages

Benefit: a large region of memory can be mapped using a single entry in the TLB (e.g., OS)

ARM Page Tables
TLB

- **1st level**: MicroTLB – one each for instruction & data sides
 - 32 entries (10 entries in older v6 architectures)
 - Address Space Identifier (ASID) [8 bits] and Non-Secure Table Identifier (NSTID) [1 bit]; entries can be global
 - Fully associative; one-cycle lookup
 - Lookup checks protection attributes; may signal Data Abort
 - Replacement either Round-Robin (default) or Random

- **2nd level**: Main TLB – catches cache misses from microTLBs
 - 8 fully associative entries (may be locked) + 64 low associative entries
 - variable number of cycles for lookup
 - lockdown region of 8 entries (important for real-time)
 - Entries are globally mapped or associated ASID and NSTID

ARM Page Tables

Translation flow for a section (1 MB)

- Virtual address
 - Table index (12 bits)
 - Section offset (20 bits)
- Physical address = physical section : section offset

Translation flow for a supersection (16 MB)

- Virtual address
 - Table index (8 bits)
 - Supersection offset (24 bits)
- Supersection base address, Extended base address = physical section : section offset
- Real address = Extended base address : supersection offset

Translation flow for a small page (4KB)

- Virtual address
 - First level index (12 bits)
 - Second level index (8 bits)
 - Page offset (12 bits)
- Page table address = read [Translation table base + first-level index]
- Physical page = read [page table address + second-level index]
- Real address = physical page : page offset

Translation flow for a large page (64KB)

- Virtual address
 - First level index (12 bits)
 - Second level index (4 bits)
 - Page offset (16 bits)
- Page table address = Read [Translation table base + first-level index]
- Physical page = read [page table address + second-level index]
- Physical address = physical page : page offset
Memory Protection & Control

- **Domains**
 - Clients execute & access data within a domain. Each access is checked against access permissions for each memory block.

- **Memory region attributes**
 - Execute never
 - Read-only, read/write, no access
 - Privileged (read-only, privileged & user read-only)
 - Non-secure (is this memory secure or not?)
 - Shareable (is this memory shared with other processors)
 - Device/shared, device/non-shared
 - Non-secure (is this memory secure or not?)
 - Sharable (is this memory shared with other processors)

- **Strongly ordered** (memory accesses must occur in program order)
- **Device/shared**, device/non-shared
- **Normal/shared**, normal/non-shared

- **Memory Abort** if permission is not valid for access

MMU Example: x86-64

IA-32 Memory Models

- **Flat memory model**
 - Linear address space
 - Single, contiguous address space

- **Segmented memory model**
 - Memory appears as a group of independent address spaces: segments (code, data, stack, etc.)
 - Logical address = (segment selector, offset)
 - 16,383 segments; each segment can be up to 2^{32} bytes

- **Real mode**
 - 8086 model
 - Segments up to 64KB in size
 - Maximum address space: 2^{30} bytes

Segments

- Each segment may be up to 4 GB
- Up to 16 K segments per process
- Two partitions per process
 - Local: private to the process
 - Up to 8 K segments
 - Info stored in a Local Descriptor Table (LDT)
 - Global: shared among all processes
 - Up to 8 K segments
 - Info stored in a Global Descriptor Table (GDT)

- Logical address is (segment selector, offset)
 - Segment selector = 16 bits:
 - 13 bits segment number + 1 bit LDT/GDT ID + 2 bits protection

IA-32 Segmentation & Paging

- **Segmentation**
- **Paging**

Segment Protection

- **S flag** in segment descriptor identifies code or data segment
- **Accessed** (referenced)
 - Has the segment been accessed since the last time the OS cleared the bit?
- **Dirty**
 - Has the page been modified?
- **Data**
 - Write-enable
 - Read-only or read/write?
 - Expansion direction
 - Expand down (e.g., for stack): dynamically changing the segment limit causes space to be added to the bottom of the stack
- **Code**
 - Execute only, execute/read (e.g., constants in code segment)
 - Conforming:
 - Execution can continue even if privilege level is elevated
IA-32 Paging

- 32-bit registers, **36-bit address space** (64 GB)
 - Physical Address Extension (PAE)
 - Bit 5 of control register CR4
 - 32-bit physical address support (4 PB of memory)
 - Only a 4 GB address space may be accessed at one time
 - Page Size Extensions (PSE-36)
 - 36-bit page size extension (64 GB of memory)
 - Supports up to 4 MB page size

Intel 64-bit mode

- Segments supported only in IA-32 emulation mode
 - Mostly disabled for 64-bit mode
 - 64-bit base addresses where used
- Three paging modes
 - 32-bit paging
 - 32-bit virtual address; 32-40 bit physical address
 - PAE
 - 32-bit virtual addresses; up to 52-bit physical address
 - 4 KB or 4 MB pages
 - IA-32e paging
 - 48-bit virtual addresses; up to 52-bit physical address
 - 4 KB, 2 MB, or 1 GB pages

32-bit paging with 4 KB pages

- Virtual address
 - Directory (10 bits)
 - Page table (10 bits)
 - Offset (12 bits)
 - CR3 register

32-bit paging with 4 MB pages

- Virtual address
 - Directory (10 bits)
 - Page table (10 bits)
 - Offset (22 bits)

32-bit paging with 4 KB pages & PAE paging

- Virtual address
 - Directory (9 bits)
 - Page table (9 bits)

IA-32e paging with 4 KB pages
IA-32e paging with 2 MB pages

Virtual address

Page directory

Physical address

CR3 register

IA-32e paging with 1 GB pages

Virtual address

Page directory

Physical address

CR3 register

Example: TLBs on the Core i7

• 4 KB pages
 – Instruction TLB: 128 entries per core
 – Data TLB: 64 entries
 • Core 2 Duo: 16 entries TLB0; 256 entries TLB1
 • Atom: 64-entry TLB, 16-entry PDE
• Second-level unified TLB
 – 512 entries

Managing Page Tables

• Linux: architecture independent (mostly)
 – Avoids segmentation (only Intel supports it)
• Abstract structures to model 4-level page tables
 – Actual page tables are stored in a machine-specific manner

Recap

• Fragmentation is a non-issue
• Page table
• Page table entry (PTE)
• Multi-level page tables
• Segmentation
• Segmentation + Paging
• Memory protection
 – Isolation of address spaces
 – Access control defined in PTE

Demand Paging
Executing a program

• Allocate memory + stack
• Load the entire program from memory (including any dynamically linked libraries)
• Then execute the loaded program

This can take a while!
There's a better way…

Demand Paging

• Load pages into memory only as needed
 – On first access
 – Pages that are never used never get loaded

• Use valid bit in page table entry
 – Valid: the page is in memory ("valid" mapping)
 – Invalid: out of bounds access or page is not in memory
 • Have to check the process’ memory map in the PCB to find out

• Invalid memory access generates a page fault

Demand Paging: At Process Start

• Open executable file
• Set up memory map (stack & text/data/bss)
 – But don’t load anything!
• Load first page & allocate initial stack page
• Run it!

Memory Mapping

• Executable files & libraries must be brought into a process’ virtual address space
 – File is mapped into the process’ memory
 – As pages are referenced, page frames are allocated & pages are loaded into them

• vm_area_struct
 – Defines regions of virtual memory
 – Used in setting page table entries
 – Start of VM region, end of region, access rights
• Several of these are created for each mapped image
 – Executable code, initialized data, uninitialized data

Demand Paging: Page Fault Handling

• Eventually the process will access an address without a valid page
 – OS gets a page fault from the MMU

• What happens?
 – Kernel searches a tree structure of memory allocations for the process to see if the faulting address is valid
 • If not valid, send a SEGV signal to the process
 • Is the type of access valid for the page?
 • Send a signal if not
 – We have a valid page but it’s not in memory
 • Go get it from the file!
Keeping track of a processes' memory region

Linux stores information about a process' address space in the memory descriptor of the PCB.

- `vm_start`
- `vm_end`

Memory descriptor

Memory region

Memory region

Memory region

Process virtual address space

Page Replacement

- A process can run without having all of its memory allocated
 - It's allocated on demand
- If the (address space used by all processes + OS) ≤ physical memory then we're ok
- Otherwise:
 - Make room: discard or store a page onto the disk
 - If the page came from a file & was not modified
 - Discard ... we can always get it
 - If the page is dirty, it must be saved in a page file (aka swap file)
 - Page file: a file (or disk partition) that holds excess pages
 - Windows: pagefile.sys
 - Linux: swap partition or swap file
 - OS X: multiple swap files in /private/var/vm/swapfile

Cost

- Handle page fault exception: ~ 400 usec
- Disk seek & read: ~ 10 msec
- Memory access: ~ 100 ns
- Page fault degrades performance by around 100,000!!
- Avoid page faults!
 - If we want < 10% degradation of performance, we must have just one page fault per 1,000,000 memory accesses

Demand Paging: Getting a Page

- The page we need is either in a mapped file (executable or library) or in a page file
 - If PTE is not valid but page # is present
 - The page we want has been saved to a swap file
 - Page # in the PTE tells us the location in the file
 - If the PTE is not valid and no page #
 - Load the page from the program file from the disk
- Read page into physical memory
 1. Find a free page frame (evict one if necessary)
 2. Read the page: This takes time: context switch & block
 3. Update page table for the process
 4. Restart the process at the instruction that faulted

Page replacement

We need a good replacement policy for good performance

FIFO Replacement

First In, First Out

- Good
 - May get rid of initialization code or other code that's no longer used
- Bad
 - May get rid of a page holding frequently used global variables
Least Recently Used (LRU)

- Timestamp a page when it is accessed
- When we need to remove a page, search for the one with the oldest timestamp
- Nice algorithm but...
 - Timestamping is a pain – we can’t do it with the MMU!

Not Frequently Used Replacement

Approximate LRU behavior
- Each PTE has a reference bit
- Keep a counter for each page frame
- At each clock interrupt:
 - Add the reference bit of each frame to its counter
 - Clear reference bit
- To evict a page, choose the frame with the lowest counter
- Problem
 - No sense of time: a page that was used a lot a long time ago may still have a high count
 - Updating counters is expensive

Clock (Second Chance)

- Arrange physical pages in a logical circle (circular queue)
 - Clock hand points to first frame
- Paging hardware keeps one reference bit per frame
 - Set reference bit on memory reference
 - If it’s not set then the frame hasn’t been used for a while
- On page fault:
 - Advance clock hand
 - Check reference bit
 - If 1, it’s been used recently – clear & advance
 - If 0, evict this page

Enhanced Clock

- Use the reference and modify bits of the page
- Choices for replacement – (reference, modify):
 - (0, 0): not referenced recently or modified
 - (0, 1): not referenced recently but modified
 - The page will have to be saved before it’s replaced
 - (1, 0): recently used
 - Less ideal – probably used again
 - (1, 1): recently used and modified
 - Least ideal – will probably be used again AND we’ll have to save it to a swap file if we replace it
- Algorithm: like clock but replace the first page in the lowest non-empty class

Kernel Swap Daemon

- kswapd on Linux
- Anticipate out-of-memory problems
- Decides whether to shrink caches if page count is low
 - Page cache, buffer cache
 - Evict pages from page frames

Demand paging summary

- Allocate page table
 - Map kernel memory
 - Initialize stack
 - Memory-map text & data from executable program (& libraries)
 - But don’t load!
- Load pages on demand (first access)
 - When we get a page fault
Summary: If we run out of free page frames

- Free some page frames
 - Discard pages that are mapped to a file
 - Move some pages to a page file

- Clock algorithm

- Anticipate need for free page frames
 - kswapd — kernel swap daemon

Paging: Multitasking Considerations

Supporting multitasking

- Multiple address spaces can be loaded in memory
 - Each process sees its own address space
 - Illusion is created by the page table

- A CPU page table register points to the current page table

- OS changes the register set when context switching
 - Includes page table register

- Performance increased with Address Space ID in TLB
 - Can cache page number → page frame number caching
 - Avoid the need for page table lookups

Working Set

- Keep active pages in memory
- A process needs its working set in memory to perform well
 - Working set = Set of pages that have been referenced in the last window of time
 - Spatial locality
 - Size of working set varies during execution

- More processes in a system:
 - Good
 - Increase throughput; chance that some process is available to run
 - Bad
 - Thrashing: processes do not have enough page frames available to run without paging

Thrashing

- Locality
 - Process migrates from one working set to another

- Thrashing
 - Occurs when sum of all working sets > total memory
 - There is not enough room to hold each process’ working set

Resident Set Management

- Resident set = set of a process’ pages in memory
- How many pages of a process do we bring in?
- Resident set can be fixed or variable
- Replacement scope: global or local
 - Global: process can pick a replacement from all frames

- Variable allocation with global scope
 - Simple
 - Replacement policy may not take working sets into consideration

- Variable allocation with local scope
 - More complex
 - Modify resident size to approximate working set size

CPU Utilization

Degree of multiprogramming

© 2014-2015 Paul Krzyzanowski
Working Set Model

Approximates locality of a program

- \(\Delta \): working set window
 - Amount of elapsed time while the process was actually executing (e.g., count of memory references)

- \(WSS_i \): working set size of process \(P_i \)
 - \(WSS_i = \sum \) set of pages in most recent \(\Delta \) page references

- System-wide demand for frames
 - \(D = \sum WSS_i \)

- If \(D > \) total memory size, then we get thrashing

Page fault frequency

- Too small a working set causes a process to thrash
 - Monitor page fault frequency per process
 - If too high, the process needs more frames
 - If too low, the process may have too many frames

Dealing with thrashing

If all else fails …

- Suspend a process(es)
 - Lowest priority, Last activated, smallest resident set, …?
- Swapping
 - Move an entire process onto the disk; no pages in memory
 - Process must be re-loaded to run
 - Not used on modern systems (Linux, Windows, etc.)
 - Term is now often used interchangeably with paging

Real-Time Considerations

- Avoid paging time-critical processes
 - The pages they use will sit in memory
- Watch out for demand paging
 - Might cause latency at a bad time
- Avoid page table lookup overhead
 - Ensure that process memory is mapped in the TLB
 - Pin high-priority real-time process memory into TLB (if possible)
 - Or run CPU without virtual addressing

Memory-mapped files

- Use the virtual memory mechanism to treat file I/O as memory accesses
 - Use memory operations instead of read & write system calls
- Associate part of the virtual address space with a file
 - Initial access to the file
 - Results in page fault & read from disk
 - Subsequent accesses
 - Memory operations
 - \(mmap \) system call
 - Multiple processes may map the same file to share data

Allocating memory to processes

- When a process needs more memory
 - Pages allocated from kernel
 - Use page replacement algorithms (e.g., clock, enhanced clock, …)
- When do processes need more memory?
 - Demand paging (loading in text & static data from executable file)
 - Memory mapped files via \(mmap \) (same as demand paging)
 - Stack growth (get a page fault)
 - Process needs more heap space
 - \(malloc \) is a user-level library; reuses space on the heap
 - \(brk \) system call: change the data segment “break point”
 - \(malloc \) requests big chunks to avoid system call overhead
 - More recently, use \(mmap \) to map “anonymous” memory – memory not associated with a file
The End