1 Recap

In the previous lecture we studied spectral clustering in the context of stochastic block models. Specifically, let

- A = adjacency matrix of G.
- $v_2 = \text{second singular vector}$
- $S_1 = \{i : v_2(i) > 0\}, S_2 = \{i : v_2(i) < 0\}$

Theorem 1. If $p - q > c\sqrt{\frac{p \log n}{n}}$ then w.p $\geq 1 - \frac{1}{n^2}$ we have,

$$(S_1 \Delta V_1) + (S_2 \Delta V_2) \leq \frac{n}{\log n}$$

2 Sparse Setting

In this lecture, first we will study the sparse setting, where $p = \frac{a}{n}, q = \frac{b}{n}$ where a, b are constants.

Q: Does spectral clustering work in the above setting?

A: Yes, it works with a modification

Let’s first see why plain spectral clustering might fail. We have that the *ideal* matrix $E[A]$ has singular values $n(p + q), n(p - q), 0, \ldots, 0$. The matrix that we see is $A = E[A] + A - E[A] = E[A] + R$. From the previous lecture, we would want that w.h.p $\sigma_1(R) \leq \sqrt{np}$. If this were true then we can argue that the singular values of A are close to those of $E[A]$.\footnote{w.p = with probability} \footnote{w.h.p = with high probability}
and hence the singular vectors will also be close. Unfortunately, the required bound on $\sigma_1(R)$ is not true for sparse graphs.

$$E[A] \rightarrow n(p + q), n(p - q) \begin{cases} p = \frac{a}{n} \rightarrow a + b, a - b \\ q = \frac{b}{n} \rightarrow a + b, a - b \end{cases}$$

Sparse graphs look like this,

![Sparse Graph Diagram](image)

in which $E[\text{deg of vertex}] = a + b$. What we can show is that, \exists hubs of $\text{deg} \geq \Omega\left(\frac{\log n}{\log \log n}\right)$

\[
\text{Adjacency matrix } A = \begin{bmatrix}
\cdots & 1 & 1 & 1 & \cdots \\
\cdots & 1 & 1 & 1 & \cdots \\
\cdots & 1 & 1 & 1 & \cdots \\
\cdots & \vdots & \vdots & \vdots & \cdots \\
\end{bmatrix}
\]

(1)

Because of the presence of high degree vertices, $\sigma_1(A)$ will be quite large.

$$\sigma_1(A) = \max_{\|x\|=1} \|Ax\| \geq \frac{\log n}{\log \log n}$$

3 Regularized Spectral Clustering

We want to get rid of the points that are highly connected,

- $A =$ adjacency matrix of G.
- remove all vertexes of $\text{deg} > 4(a + b)$
- let A' be new matrix
- run spectral clustering on A'

Theorem 2. If $(a - b) > \frac{c}{n^2} \sqrt{a}$ then w.p $\geq 1 - \frac{1}{n^2}$, regularized spectral clustering outputs S_1, S_2 such that,

$$(S_1 \Delta V_1) + (S_2 \Delta V_2) \leq \epsilon n$$
Proof. The proof is exactly the same as the last lecture as long as we can claim that \(\sigma_1(A' - E[A]) \leq c\sqrt{a + b} \). This is formalized in the lemma below.

Lemma 1. Let \(A_{n \times n} \) be a random matrix with \(A_{ij} \in \{0, 1\} \). \(E[A_{ij}] = p_{ij} \), let \(d = n \max_{i,j} p_{ij} \) w.p \(\geq 1 - \frac{1}{n^2} \), the following holds. Choose any set \(10n/d \) rows/columns of \(A \) and reduce their weights. Let \(k' \) be the resulting matrix then \(\|A' - E[A]\| \leq O(\sqrt{d} + \sqrt{d'}) \) where \(d' \) is the new maximum degree of the graph.

4 Decomposition Theorem

The proof of the lemma will rely on the following decomposition theorem.

Theorem 3. Let \(A \) be a random matrix such that \(A_{ij} \in \{0, 1\} \). \(E[A_{ij}] = p_{ij} \) and \(d = n \cdot \max_{i,j} p_{ij} \). Then w.p \(\geq 1 - \frac{1}{n^2} \), \(A \) can be decomposed into \(N, R, C \)

\[
\begin{align*}
|\|A' - E[A]\| | & \leq O(\sqrt{d}) \\
\text{each row of } R \text{ has } & \leq 64 \text{ 1’s and } R \text{ intersects } \leq \frac{n}{d} \text{ columns} \\
\text{each column of } C \text{ has } & \leq 64 \text{ 1’s and } C \text{ intersects } \leq \frac{n}{d} \text{ rows}
\end{align*}
\]

Next, we will use the decomposition theorem to prove the lemma above. We will often use the following standard fact about matrices.

Lemma 2. Let \(A \) be a matrix such that the \(\ell_1 \) norm of each row is bounded by \(a \) and the \(\ell_1 \) norm of each column is bounded by \(b \). Then \(\|A\| \leq \sqrt{ab} \).

5 Proof of Lemma

Proof. Let \(I \) be the indices of the rows modified and \(I' \) be the indices of the columns modified. Define the bad region \(E \) to be a union of disjoint sets \(E_1 \) and \(E_2 \), where \(E_1 = I \times [n] \) and \(E_2 = [n \setminus I] \times I' \).

\[
\|A' - E[A]\| \leq \|(A' - E[A])_N\| + \|(A' - E[A])_R\| + \|(A' - E[A])_C\|
\]
Let’s first bound the first term on the right hand side. We have

\[\| (A' - E[A])_N \| \leq \| (A - A')_N \| + \| (A - E[A])_N \| \leq \| (A - A')_N \| + O(\sqrt{d}) \text{ (by decomposition theorem)} \]

Next we have

\[\| (A - A')_N \| = \| (A - A')_{N \cap E} \| \text{ (A and A' are the same outside E)} \]
\[\leq \| A_{N \cap E} \| \text{ (A dominates A - A' entrywise)} \]
\[\leq \| (A - E(A)_{N \cap E})_N \| + \| E[A]_{N \cap E} \| \]
\[\leq \| (A - E[A])_{N \cap E_1} \| + \| (A - E[A])_{N \cap E_2} \| + \| E[A]_{N \cap E} \| \]
\[\leq 2\| (A - E[A])_N \| + \| E[A]_{N \cap E} \| \text{ (restricting onto a product decreases spectral norm)} \]

For the final term we have

\[\| E[A]_{N \cap E} \| \leq \| E[A]_{N \cap E_1} \| + \| E[A]_{N \cap E_2} \| \]
\[\leq O(\sqrt{d}) + O(\sqrt{d}) \text{ (Using Lemma 2)} \]

Now let’s bound Term 2, i.e. \(\| (A' - E[A])_R \| \). Term 3 can be bounded similarly. We have

\[\| (A' - E[A])_R \| \leq \| A'_R \| + \| E[A]_R \| \leq O(\sqrt{d'}) + O(\sqrt{d}) \text{ (Using Lemma 2)} \]

we use the same procedure for term 3.

In the next class we will prove the decomposition theorem.

6 Additional Reading