Graph clustering algorithms utilize spectral techniques such as singular value decomposition, singular decomposition, etc., in order to properly partition (cluster) a graph into \(k \) pieces. Given an undirected graph \(G = (V, E) \), the goal is to partition the set of vertices \(V \) into \(k \) disjoint pieces \(\{V_i\}_{i=0}^k \) such that \(V_i \cap V_j = \emptyset \) and \(\bigcup V_i = V \).

Intuitively, a good clustering should result in clusters in which there are more edges connecting vertices within the same cluster versus outside of it. If \(G \) can be nicely partitioned, then it is worthwhile to look at a class of clustering algorithms, spectral clustering, in order to accomplish this.

Before implementing an algorithm on \(G \), we should make an assumption on how \(G \) was generated. Here, we introduce the Stochastic Block Model (SBM). This is a probabilistic or generative model represented as \(Pr(G|\theta) \) where we can estimate the parameters of \(\theta \) based on \(G \). This is beginning to look like a maximum likelihood problem, however, we will look at a spectral algorithm approach shortly. But first, let’s talk more about this generative model. Let’s consider the simplest partitioning \(k = 2 \) where \(V_1 \) and \(V_2 \) are equally sized partitions containing \(n \) vertices each.

We denote edge \(e_{i,j} \) as the edge connecting vertex \(i \) with vertex \(j \). We also denote \(\text{deg}(i) \) as the degree of vertex \(i \) or simply the number of vertices \(i \) is connected to. We can extend this notation to \(\text{deg}(i)_{V_p} \) in order to indicate the number of vertices \(i \) is connected to that also belong to partition \(V_p \). Now we can define the probabilistic existence of an edge in within the set of edges \(E \) by the following:

\[
Pr[e_{i,j} \in E] = \begin{cases}
 p & \text{when } i, j \in V_1 \\
 p & \text{when } i, j \in V_2 \\
 q & \text{otherwise}
\end{cases}
\]

Let’s try to understand what kind of relationship \(p \) and \(q \) must satisfy for the recovery of partitions to be possible. It should be obvious that \(p > q \). We would also need the following conditions

1. \(p \geq a\log(n)/n \) (connectivity condition for \(V_1 \) and \(V_2 \))
2. \(\forall i \in V_1, \text{deg}(i)_{V_1} > \text{deg}(i)_{V_2} \)

Notice that \(\text{deg}(i)_{V_1} \) has an expectation of \(np \) and variance of \(np(1-p) \). Similarly, \(\text{deg}(i)_{V_2} \) has expected value \(nq \) and variance \(nq(1-q) \). In order to define a condition for exact recovery given \(p \) and \(q \), let’s say: \(\text{deg}(i)_{V_1} \approx np - \sqrt{np(1-p)} \) and \(\text{deg}(i)_{V_2} \approx nq + \sqrt{nq(1-q)} \). These conditions account for lower values of \(\text{deg}(i)_{V_1} \) by subtracting the standard deviation from the mean, while adding the standard deviation to the mean for \(\text{deg}(i)_{V_2} \). Thus, we’re tightening the margin while maintaining condition (2) from above. We can rearrange condition 2 given these approximation in order to achieve a sufficient condition for exact recovery:

\[
np - \sqrt{np(1-p)} > nq + \sqrt{nq(1-q)}
\]

\[
n(p-q) > \sqrt{n(\sqrt{p(1-p)} + \sqrt{q(1-q)})}
\]
As stated before, there are several ways to go about this problem such as MLE, semi-definite programming, spectral algorithms, etc. We will use spectral clustering methods. This involves a class of algorithms where we define an adjacency matrix \(A \in \mathbb{R}^{N \times N} \) based on our graph \(G \) where \(|V| = N \). Let the singular value decomposition of \(A \) be written as:

\[
A = U \Sigma V^T = \sum_{i=1}^{N} \sigma_i u_i v_i^T
\]

Algorithm 1 Spectral Algorithm

1. Construct \(A = U \Sigma V^T = \sum_{i=1}^{N} \sigma_i u_i v_i^T \), the adjacency matrix of \(G \sim SBM(p, q) \)
2. Obtain the singular values \(\sigma_i \) such that \(\sigma_1 \geq \sigma_2 \geq \sigma_3 \ldots \sigma_N \)
3. Obtain singular vectors \(v_1 \ldots v_k \)
4. Construct \(A_k = \sum_{i=1}^{k} \sigma_i u_i v_i^T \) using \(v_1 \ldots v_k \)
5. Run clustering algorithm: e.g. \(k\)-means

Taking the expectation value of our adjacency matrix \(E[A] \) gives us an 'ideal matrix' in the sense that instead of traditional ones and zeroes, our matrix entries are \(p \) and \(q \):

\[
E[A] = \begin{pmatrix}
p & \ldots & p & q & \ldots & q \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
p & \ldots & p & q & \ldots & q \\
q & \ldots & q & p & \ldots & p \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
q & \ldots & q & p & \ldots & p
\end{pmatrix}
\]

This can be more elaborately expressed as:

\[
E[A] = \frac{N}{2} (p + q) v_1 v_1^T + \frac{N}{2} (p - q) v_2 v_2^T,
\]

where \(v_1, v_2 \in \mathbb{R}^N \) and \(v_1 = [\frac{1}{\sqrt{N}} \ldots \frac{1}{\sqrt{N}}]^T \) and \(v_2 = [\frac{1}{\sqrt{N}} \ldots \frac{1}{\sqrt{N}}, -\frac{1}{\sqrt{N}} \ldots -\frac{1}{\sqrt{N}}]^T \). Notice that \(v_2 \) can be used to get an exact partition of the graph into two components. Our goal is to compute \(\hat{v}_2 \) which is the second highest singular vector of \(A \) in order to output partitions \(S_1 \) and \(S_2 \) from spectral clustering.

Theorem 1. If \(p - q > C \sqrt[3]{\frac{p \log n}{n}} \), then with probability at least \(1 - \frac{1}{n^2} \) spectral clustering will output \(S_1 \) and \(S_2 \) such that:

\[
|S_1 \Delta V_1| + |S_2 \Delta V_2| \leq \frac{n}{\log n}.
\]
So we might get some values that belong to V_2 that are in S_1 and vice-versa, but it is fine. We can view A as a slight perturbation of $E[A]$, which we can denote as M. For the vectors v_1 and v_2, which are the two singular singular vectors of M, we can find their respective singular values as:

$$\lambda_1 = \frac{N}{2}(p + q) \quad \lambda_2 = \frac{N}{2}(p - q).$$

Spectral clustering will succeed if the singular vectors of M and A are close to each other. The following theorem lets us argue about the closeness of the singular values.

Theorem 2. If there is an error matrix $R = A - M$ such that $R_{i,j} = A_{i,j} - M_{i,j}$, $E[R] = 0$, $|R_{i,j}| \leq 1$, and $\text{Var}(R_{i,j}) \leq \sigma^2$ where σ^2 is the variance of the highest entry in R. If $\sigma^2 \geq \frac{c \log n}{n}$ then with probability at least $1 - \frac{1}{n^3}$, $\sigma_1(R) \leq 10\sqrt{\frac{n}{\log n}}$.

Remember that since M has rank 2, thus the other singular values besides the first two are simply zero. Thus we get that with high probability the singular values of A are:

$$\sigma_1 = n(p + q) \pm \sqrt{np(1 - p)}$$

$$\sigma_2 = n(p - q) \pm \sqrt{np(1 - p)}$$

$$\sigma_3 = \pm \sqrt{np(1 - p)}$$

Recall, we wanted to know if \hat{v}_2 was good enough. The Davis-Kahan Theorem addresses this problem.

Theorem 3. Davis-Kahan Theorem

Let $M, M^o \in \mathbb{R}^{N \times N}$ where the singular vectors and values of M are denoted as $v_1, v_2, \ldots v_N$ and $\sigma_1, \sigma_2, \ldots, \sigma_N$ and the singular vectors and values of M^o are denoted as $w_1, w_2, \ldots w_N$ and $\lambda_1, \lambda_2, \ldots, \lambda_N$. If M^o is the perturbed matrix, then:

$$||v_i - w_i|| \leq \frac{2\sigma_1(M - M^o)}{\min_{j \neq i} |\sigma_i - \sigma_j|}$$

By the Davis-Kahan theorem, we can observe the angular deviation between v_2 and \hat{v}_2:

$$||\hat{v}_2 - v_2|| \leq \frac{2\sigma_1(R)}{\min(np, n(p - q))}$$

$$\leq \frac{2\sqrt{np(1 - p)}}{n(p - q)}$$

and since, $p - q \geq \sqrt{\frac{p \log n}{n}}$

$$||\hat{v}_2 - v_2|| \leq \frac{1}{\sqrt{\log n}}$$

Proof of Main Theorem. If we misclassify k points using the vector \hat{v}_2 then by Davis-Kahan we have that $||\hat{v}_2 - v_2|| \geq \sqrt{\frac{k}{n}}$. Hence we get that the number of misclassified points is $k \leq \frac{n}{\log n}$. \qed
1 Additional Reading

- A paper by Mcsherry that solve the problem in full generality. http://www.cc.gatech.edu/~mihail/D.8802readings/mcsherrystoc01.pdf

- An excellent tutorial on spectral clustering. http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/Luxburg07_tutorial_4488%5b0%5d.pdf