Convex Optimization

Instructor: Pranjal Awasthi
So Far

• Learning Algorithms such as
 – SVMs
 – Regression
 – Ridge
 – Maximum likelihood estimation in graphical models

• All rely on solving convex problems

• Convex Optimization
 – Concerns the study of algorithm for optimizing convex functions
 – The engine underneath most successful ML algorithms
Convexity

- A function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if and only if
 - $\forall x, y \in \mathbb{R}^n, 0 < t < 1,$
 - $f(tx + (1 - t)y) \leq tf(x) + (1 - t)f(y)$

- The function value at the average is less than the average of the function values.
Convexity

• A function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is convex if and only if
 – $\forall x, y \in \mathbb{R}^n$, $0 < t < 1$,
 – $f(tx + (1 - t)y) \leq tf(x) + (1 - t)f(y)$

• If f is twice differentiable then convexity equivalent to
 – $H(x) \geq 0$, $\forall x$
 – $H(x)$ is an $n \times n$ matrix, $H_{i,j}(x) = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$
 – Equivalent to $\lambda_{min}(H(x)) \geq 0$, $\forall x$
Basic Convex Functions

- Affine: $ax + b$
- Exponential: e^{ax}
- Power: x^p, for $p \geq 1$ or $p \leq 0$
- Norms: $\|x\|_2, \|x\|_1, ...$

- Convexity preserving operations
 - Positive scaling: $cf(x), c > 0$
 - Sum: $f_1(x) + f_2(x)$
 - Pointwise Maximum: $\max (f_1(x), f_2(x))$
Examples

\[\min \frac{1}{2} \| \mathbf{w} \|^2 \]

Subject to: \(y_i (\mathbf{w} \cdot \mathbf{x}_i) \geq 1, \forall i \)

\[L = \frac{1}{2} \| \mathbf{w} \|^2 \]

\[\frac{\partial L}{\partial w_j} = w_j \]

\[\frac{\partial^2 L}{\partial w_j^2} = 1, \quad \frac{\partial^2 L}{\partial w_j \partial w_k} = 0 \]

\[H = \begin{bmatrix} 1 & \cdots & 0 \\ 0 & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix} = I \]

always positive semidefinite
Examples

\[\hat{w} = \arg\min_w \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{X}_i \cdot w)^2 \]

\[\frac{\partial L}{\partial w_j} = \frac{1}{m} \sum_{i=1}^{m} 2(y_i - \hat{X}_i \cdot w)(-X_{ij}) \]

\[\frac{\partial^2 L}{\partial w_j \partial w_k} = \frac{1}{m} \sum_{i=1}^{m} 2 X_{ij} X_{ik} \]

\[H = \frac{1}{m} X^T X \quad \text{(covariance matrix)} \]

always positive semidefinite
Examples

\[\hat{w} = \arg\min_w \frac{1}{m} \sum_{i=1}^{m} \left(y_i - \hat{X}_i \cdot w \right)^2 + ||w||^2 \]

Sum of two convex functions
Examples

\[\hat{w} = \arg\min_w \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{X}_i \cdot w)^2 + \|w\|_1 \]
Examples

\[-\frac{1}{m} \sum_{s=1}^{m} \sum_{i=1}^{s} \theta_i X_{si} + \sum_{i \sim j} \theta_{i,j} X_{si} X_{sj} + A(\theta)\]

\[\frac{\partial^2 A(\theta)}{\partial \theta_i \partial \theta_j} = \text{cov}(X_i, X_j)\]

Hessian = Covariance matrix

Always positive semidefinite
Checking for Convexity

1. Use definition
 - $\forall x, y \in \mathbb{R}^n, \ 0 < t < 1,$
 - $f(tx + (1-t)y) \leq tf(x) + (1-t)f(y)$

2. If f is twice differentiable then check Hessian
 - Equivalent to $\lambda_{min}(H(x)) \geq 0, \forall x$ — very useful

3. Show that f is obtained from a convex functions using convexity preserving operations

4. In general, checking convexity is NP-hard
Advantage of Convexity

• In general, checking convexity is NP-hard
• But minimizing a convex function is easy!
• General method
 – Ellipsoid Algorithm
 – Can output a point x such that $f(x) \leq f(x^*) + \epsilon$
 • $f(x^*) = \min_x f(x)$
 • Runtime $\sim O(n^4 \log(1/\epsilon))$

• Can do better if functions are nicer
Practical Algorithms for Convex Minimization

- First Order methods
 - Gradient Descent
 - Subgradient Descent
 - Stochastic Gradient Descent
 - Accelerated Gradient Descent

- Second Order Methods
 - Newton’s Method
 - Gauss-Newton
 - BFGS
Gradient Descent

• Assume f is continuous and differentiable
• What makes minimizing f easy?
 – Any local minimum is a global minimum

 Suppose x_0 is a local min

 $\Rightarrow \forall z$ such that $\|z - x_0\| \leq R$, $f(z) \geq f(x_0)$

 Suppose $y \neq x_0$ is the global min

 \Rightarrow
 ① $f(y) < f(x_0)$
 ② $\|y - x_0\| > R$

 Let $z = \theta y + (1 - \theta) x_0$ for $\theta = \frac{R}{2\|y - x_0\|}$

 Then
 ③ $\|z - x_0\| = \theta \|y - x_0\| = \frac{R}{2}$
 ④ $f(z) \leq \theta f(y) + (1 - \theta) f(x_0) < f(x_0)$

 ③ + ④ contradicts local optimality of x_0.
Gradient Descent

- Assume f is continuous and differentiable
- What makes minimizing f easy?
 - Local information implies global information
 - $f(y) \geq f(x) + \Delta f(x)^T(y - x), \forall x, y$

Proof in 1-dimensions:

$$f(ty + (1-t)x) \leq tf(y) + (1-t)f(x)$$

$$= t(f(y) - f(x)) + f(x)$$

$$\Rightarrow tf(y) \geq f(x) + \left[\frac{f(ty + (1-t)x) - f(x)}{t(y-x)}\right] (y - x)$$

$$\Rightarrow f(y) \geq f(x) + \left[\lim_{t \to 0} \frac{f(ty + (1-t)x) - f(x)}{t(y-x)}\right] (y - x)$$

$$= f(x) + \nabla f(x)(y - x) \quad \Box$$
Gradent Descent

- Assume f is continuous and differentiable
- What makes minimizing f easy?
 - Local information implies global information
 - $f(y) \geq f(x) + \Delta f(x)^T(y - x), \forall x, y$
Gradient Descent

• Assume f is continuous and differentiable
• What makes minimizing f easy?
 – Local information implies global information
 – $f(y) \geq f(x) + \Delta f(x)^T(y - x), \forall x, y$
 – Given a point x_t and $\Delta f(x_t)$,
 • Adding gradient can only hurt
 • Must go in the other direction

 $x_{t+1} = x_t - \eta \Delta f(x_t)$
 $\eta = \text{step size}$
Gradient Descent

- Assume f is continuous and differentiable
- Start at arbitrary x_0. If $\Delta f(x_0) = 0$, return x_0
- For $t=1,2,\ldots$
 - $x_{t+1} = x_t - \eta \Delta f(x_t)$

- What guarantee do we have on the optimal solution?
- When to stop?
Gradient Descent

• Assume f is continuous and differentiable
• Start at arbitrary x_0. If $\Delta f(x_0) = 0$, return x_0
• For $t=1,2,\ldots$:
 \[x_{t+1} = x_t - \eta \Delta f(x_t) \]

• Assumption: f is L-Lipschitz
 – Gradients at nearby points cannot change drastically
 – A notion of smoothness of f
 – $\|\Delta f(x) - \Delta f(y)\|_2 \leq L \|x - y\|_2$
Gradient Descent

Theorem: Let x^* be the optimal solution and x_0 be the initial point. Then in t steps, we have

$$f(x_t) - f(x^*) \leq \frac{||x_0 - x^*||^2}{2\eta t},$$

provided $\eta \leq \frac{1}{2L}$

- η too large: Won’t converge
- η too small: Convergence is slow
- In practice: η is chosen to decay with t
- #iterations independent of n, the dimensionality!!
Gradient Descent

Theorem: Let x^* be the optimal solution and x_0 be the initial point. Then in t steps, we have

$$f(x_t) - f(x^*) \leq \frac{||x_0-x^*||^2}{2\eta t}, \text{ provided } \eta \leq \frac{1}{2L}$$

- When to stop
 - When gradient becomes small
 - Value of $f()$ does not change much