Boosting

Instructor: Pranjal Awasthi
Motivating Example

Want to predict winner of 2016 general election
Motivating Example

• Step 1: Collect training data
 – 2012,
 – 2008,
 – 2004,
 – 2000,
 – 1996,
 – 1992,
 –

What if instead, we have good “rules of thumb” that often work well?

• Step 2: Find a function that gets high accuracy (~99%) on training set.
Motivating Example

• Step 1: Collect training data
 – 2012,
 – 2008,
 – 2004,
 – 2000,
 – 1996,
 – 1992,
 –

 \[h_1 = \text{If sitting president is running, go with his/her party,}\]
 \[\text{Otherwise, predict randomly} \]

• \(h_1 \) will do well on a subset of train set, and will do better than half overall, say 51% accuracy.
Motivating Example

• Step 1: Collect training data
 - ,
 - 2008 🐘
 - ,
 - 2000, 🐘
 - ,
 - ,
 -

$h_1 =$ If sitting president is running, go with his/her party,
Otherwise, predict randomly

What if only focus on a subset of examples: h_1 will do poorly.
Motivating Example

• Step 1: Collect training data
 – ,
 – 2008 🇺🇸
 – ,
 – 2000, 🇺🇸
 – ,
 – ,
 –

h_2 = If CNN poll gives a 20pt lead to someone, go with his/her party, Otherwise, predict randomly

What if only focus on a subset of examples: h_1 will do poorly. But h_2 will do well.

• h_2 will do well, say 51% accuracy.
Motivating Example

• Step 1: Collect training data
 – 2012,
 – 2008,
 – 2004,
 – 2000,
 – 1996,
 – 1992,
 –

• Suppose can consistently produce rules in H that do slightly better than random guessing.
Motivating Example

- Step 1: Collect training data
 - 2012,
 - 2008,
 - 2004,
 - 2000,
 - 1996,
 - 1992,
 -

- Output a single rule that gets high accuracy on training set.
Boosting: A general method for converting “rules of thumb” into highly accurate predictions.
History of Boosting

• Originally studied from a purely theoretical perspective
 – Is weak learning equivalent to strong learning?
 – Answered positively by Rob Schapire in 1989 via the boosting algorithm.

• AdaBoost -- A highly practical version developed in 1995
 – One of the most popular ML (meta)algorithms
History of Boosting

• Has connections to many different areas
 – Empirical risk minimization
 – Game theory
 – Convex optimization
 – Computational complexity theory
Strong Learning

• To get strong learning, need to
 – Design an algorithm that can get any arbitrary error $\epsilon > 0$, on the training set S_m
 – Do VC dimension analysis to see how large m needs to be for generalization
Theory of Boosting

• Weak Learning Assumption:
 – There exists algorithm A that can consistently produce weak classifiers on the training set

 $S_m = (\tilde{X}_1, y_1), (\tilde{X}_2, y_2) ...$
 – Weak Classifier:
 • For every weighting W of S_m, A outputs h_W such that

 $\text{err}_{S_m,W}(h_W) \leq \frac{1}{2} - \gamma, \quad \gamma > 0$
 • $\text{err}_{S_m,W}(h_W) = \sum_{i=1}^{m} \frac{w_i I(h_W(\tilde{X}_i) \neq y_i)}{\sum_{i=1}^{m} w_i}$

$e^{\text{err}}_{S_m}(h) = \sum_{i=1}^{m} w_i$
Theory of Boosting

• Weak Learning Assumption:
 – There exists an algorithm A that can consistently produce weak classifiers on the training set S_m

• Boosting Guarantee: Use A to get algorithm B such that
 – For every $\epsilon > 0$, B outputs f with $err_{S_m}(f) \leq \epsilon$
AdaBoost

- Run A on S_m get h_1
- Use h_1 to get W_2
- Run A on S_m with weights W_2 to get h_2
- Repeat T times
- Combine h_1, h_2, \ldots, h_T to get the final classifier.

Q1: How to choose weights?
Q2: How to combine classifiers?
Choosing weights

- Run A on S_m get h_1
- Use h_1 to get W_2
- Run A on S_m with weights W_2 to get h_2
- Repeat T times
- Combine h_1, h_2, \ldots, h_T to get the final classifier.

Idea 1: Let W_t be uniform over examples that h_{t-1} got incorrectly

- h_2 could be $-h_1$
- h_3 could be $+h_1$
- No new information accumulated in each step.
Choosing weights

- Run A on S_m get h_1
- Use h_1 to get W_2
- Run A on S_m with weights W_2 to get h_2
- Repeat T times
- Combine h_1, h_2, \ldots, h_T to get the final classifier.

Idea 2: Let W_t be such that error of h_{t-1} becomes $\frac{1}{2}$.

\[\omega(A) = W_{t-1}(x, y) \]

\[S \text{ (die } A \text{ by } \frac{1}{2} - y \text{) } \]

\[\omega(B) = W_{t-1}(\frac{1}{2} - y) \]

$A = h_{t-1}$ is correct

$B = h_{t-1}$ is incorrect
Choosing weights

- Run A on S_m get h_1
- Use h_1 to get W_2
- Run A on S_m with weights W_2 to get h_2
- Repeat T times
- Combine h_1, h_2, \ldots, h_T to get the final classifier
- If $\text{err}_{S_m,W_{t-1}}(h_{t-1}) = \frac{1}{2} - \gamma$, then
 - $W_{t,i} = W_{t-1,i}$, if h_{t-1} is incorrect on \vec{X}_i
 - $W_{t,i} = \frac{W_{t-1,i}(\frac{1}{2} - \gamma)}{(\frac{1}{2} + \gamma)}$, if h_{t-1} is correct on \vec{X}_i
Combining Classifiers

- Run A on S_m get h_1
- Use h_1 to get W_2
- Run A on S_m with weights W_2 to get h_2
- Repeat T times
- Combine h_1, h_2, \ldots, h_T to get the final classifier.

Take majority vote $f(\vec{X}) = MAJ(h_1(\vec{X}), h_2(\vec{X}), \ldots, h_T(\vec{X}))$

$$= \arg\max_{y \in \mathbb{Y}} \left(\sum_{i=1}^{m} h_i(x) \right)$$
Combining Classifiers

• Run A on S_m get h_1
• Use h_1 to get W_2
• Run A on S_m with weights W_2 to get h_2
• Repeat T times
• Combine $h_1, h_2, ... h_T$ to get the final classifier.

Take majority vote $f(\overrightarrow{X}) = MAJ(h_1(\overrightarrow{X}), h_2(\overrightarrow{X}), ... h_T(\overrightarrow{X}))$

Theorem:
If error of each h_i is $\frac{1}{2} - \gamma$, then $err_{S_m}(f) \leq e^{-2T\gamma^2}$
Analysis

Theorem:
If error of each h_i is $\frac{1}{2} - \gamma$, then $err_{sm}(f) \leq e^{-2T\gamma^2}$

Let's analyze total weight W_t examples at each step:

Initially $W_t = m$

Given $W_{t-1} < h_{t-1}$:

- A: examples h_{t-1} gets correctly
- B: examples h_{t-1} gets incorrectly

$w(A) = W_{t-1} \left(\frac{1}{2} + \gamma\right)$

$w(B) = W_{t-1} \left(\frac{1}{2} - \gamma\right)$

A is being scaled by $\frac{\frac{1}{2} - \gamma}{\frac{1}{2} + \gamma}$

$W_t = W_{t-1} \left(\frac{1}{2} \cdot \gamma\right) \left(\frac{1}{2} - \gamma\right) + W_{t-1} \left(\frac{1}{2} - \gamma\right) = W_{t-1} (1 - 2\gamma)$
Analysis

Theorem:
If error of each h_i is $\frac{1}{2} - \gamma$, then $\text{err}_{sm}(f) \leq e^{-2TY\gamma^2}$
Analysis

Theorem:
If error of each h_i is $\frac{1}{2} - \gamma$, then $err_{sm}(f) \leq e^{-2T\gamma^2}$
Analysis

Theorem:

If error of each h_i is $\leq \frac{1}{2} - \gamma$, then $\text{err}_{sm}(f) \leq e^{-2T\gamma^2}$

Let W_t be such that error of h_{t-1} becomes $\frac{1}{2}$.

Take (weighted) majority vote

$$f = \text{sgn} \left(\frac{1}{2} \sum_{i=1}^{n} w_i \cdot h_i(x) \right)$$

$$\lambda_t = \ln \left(\frac{\frac{1}{2} + \gamma}{\frac{1}{2} - \gamma} \right)$$

$$\text{scdir} = \left(\frac{\frac{1}{2} - \gamma}{\frac{1}{2} + \gamma} \right)$$
Strong Learning

• To get strong learning, need to
 – Design an algorithm that can get any arbitrary error $\epsilon > 0$, on the training set S_m
 – Do VC dimension analysis to see how large m needs to be for generalization
Generalization Bound

\[h_1, h_2, h_3, \ldots \]

\[VC \dim(H) = d \]

\[f = \text{MAJ}(h_1, h_2, \ldots, h_T) \]

\[VC \dim(f) \geq Td \logTd \]

\[m \geq \frac{d^l}{\epsilon^2} > \frac{Td \log Td}{\epsilon^2} \]

What is \(T \)?

\[e^{-2T \gamma^2} \leq \epsilon \]

\[T > \frac{1}{2\gamma^2} \log \left(\frac{1}{\epsilon} \right) \]
Applications: Decision Stumps

\[y = f(x_1 - - x_n) \text{ ; } x_i \in \{0, 1\} \]

Stumps:

\[+1 \quad -1 \quad +1 \quad -1 \]

\text{Stumps + Boosting} \rightarrow \text{usually don't overfit.}
Advantages of AdaBoost

• Helps learn complex models from simple ones without overfitting
• A general paradigm and easy to implement
• Parameter free, no tuning
• Often not very sensitive to the number of rounds T

Cons:
 – Does not help much if weak learners are already complex.
 – Sensitive to noise in the data