On some provably correct cases of variational inference for topic models

Pranjal Awasthi * Andrej Risteski †

March 23, 2015

Abstract

Variational inference is a very efficient and popular heuristic used in various forms in the context of latent variable models. It’s closely related to Expectation Maximization (EM), and is applied when exact EM is computationally infeasible. Despite being immensely popular, current theoretical understanding of the effectiveness of variational inference based algorithms is very limited. In this work we provide the first analysis of instances where variational inference algorithms converge to the global optimum, in the setting of topic models.

More specifically, we show that variational inference provably learns the optimal parameters of a topic model under natural assumptions on the topic-word matrix and the topic priors. The properties that the topic word matrix must satisfy in our setting are related to the topic expansion assumption introduced in (Anandkumar et al., 2013), as well as the anchor words assumption in (Arora et al., 2012c). The assumptions on the topic priors are related to the well known Dirichlet prior, introduced to the area of topic modeling by (Blei et al., 2003).

It is well known that initialization plays a crucial role in how well variational based algorithms perform in practice. The initializations that we use are fairly natural. One of them is similar to what is currently used in LDA-c, the most popular implementation of variational inference for topic models. The other one is an overlapping clustering algorithm, inspired by a work by (Arora et al., 2014) on dictionary learning, which is very simple and efficient.

While our primary goal is to provide insights into when variational inference might work in practice, the multiplicative, rather than the additive nature of the variational inference updates forces us to use fairly non-standard proof arguments, which we believe will be of general interest. Our proofs rely on viewing the updates as an operation which, at each timestep, sets the new parameter estimates to be noisy convex combinations of the ground truth values, and a bounded error term which depends on the previous estimate. The weight on the ground truth values will be large, compared to the error term, which will cause the error term to eventually reach zero. The large weight on the ground truth values will be a byproduct of our model assumptions, which will imply a “local” notion of anchor words for each document - words which only appear in one topic in a given document, as well as a “local” notion of anchor documents for each word - documents where that word appears as part of a single topic.

*Princeton University, Computer Science Department. Email: pawashti@princeton.edu.
†Princeton University, Computer Science Department. Email: risteski@princeton.edu
Contents

1 Introduction .. 3
2 Latent variable models and EM 3
3 Topic models ... 4
4 Variational relaxation for learning topic models 5
 4.1 Simplified updates in the long document limit 6
 4.2 Alternating KL minimization and thresholded updates ... 6
5 Initializations ... 7
6 Case study 1: Sparse topic priors, support initialization .. 8
 6.1 Provable convergence of tEM 9
 6.2 Initialization ... 9
7 Case study 2: Dominating topics, seeded initialization 10
 7.1 Proof summary ... 11
 7.1.1 A useful lemma 11
 7.1.2 Maintaining good lower bounds 11
8 On common words ... 11
9 Discussion and open problems 12
A Notation throughout supplementary material 13
B Case study 1: Sparse topic priors, support initialization .. 13
 B.1 Provable convergence of tEM 13
 B.1.1 Thresholding .. 14
 B.1.2 Lower bounds on the $\gamma_{d,i}$ and $\beta_{t,j}$ variables . 14
 B.1.3 Upper bound on the $\beta_{t,j}$ values 16
 B.1.4 Upper bounds on the γ values 17
 B.1.5 Phase II: Alternating minimization - upper and lower bound evolution 17
 B.2 Iterative tEM updates, incomplete tEM updates 20
 B.3 Initialization ... 20
 B.3.1 Constructing a no-false-positives test 22
 B.3.2 Finding the topic supports from identifying pairs ... 22
 B.3.3 Finding the identifying pairs 23
 B.3.4 Finding the document supports 24
C Case study 2: Dominating topics, seeded initialization .. 25
 C.1 Estimates on the dominating topic 26
 C.2 Phase I: Determining the anchor words 27
 C.2.1 Lower bounds on the $\beta_{t,j}$ values 27
 C.2.2 Decreasing $\beta_{t,j}$ values 28
 C.3 Discriminative words 31
 C.3.1 Bounds on the $\beta_{t,j}$ values 31
 C.3.2 Decreasing $\beta_{t,j}$ values 32
 C.4 Thresholding and parameter range 33
 C.5 Getting the supports correct 34
 C.6 Alternating minimization 35
1 Introduction

Over the span of the last few years, heuristics for non-convex optimization have emerged as one of the most fascinating phenomena for theoretical study in machine learning. Methods like alternating minimization, expectation-maximization, variational inference and the like enjoy immense popularity among ML practitioners, and with good reason: they’re vastly more efficient than alternate available methods like solving convex relaxations, and are usually easily modified to suite different applications.

Theoretical understanding however is sparse and we know of very few instances when these methods come with guarantees on the solution quality. Among more classical results in this direction are the analyses of Lloyd’s algorithm for K-means, which is very closely related to the EM algorithm for mixtures of Gaussians (Kumar and Kannan, 2010), (Dasgupta and Schulman, 2000), (Dasgupta and Schulman, 2007). The recent work of (Balakrishnan et al., 2014) also characterizes global convergence properties of the EM algorithm for more general settings. Another line of recent work has focused on a different heuristic called alternating minimization, mostly in the context of dictionary learning. In this setting, (Agarwal et al., 2013), (Arora et al., 2015) prove that with appropriate initialization, alternating minimization can provably recover the ground truth. (Netrapalli et al., 2013) have proven similar results in the context of phase retrieval.

This paper addresses another popular heuristic known as variational inference (Jordan et al., 1999). We provide the first characterization of global convergence of variational inference based algorithms for topic models (Blei et al., 2003). We show that under natural assumptions on the topic-word matrix and the topic priors, along with initialization strategies, variational inference converges to the parameters of the underlying ground truth model. There are a number of technical difficulties to be overcome to prove our results. First and foremost, the difficulty in analyzing alternating minimization methods in the context of dictionary learning is somewhat alleviated by the fact that one can come up with closed form expressions for the updates of the dictionary matrix. We do not have this luxury, so we have to get around this fact. Second, the “norm” in which variational inference naturally operates is KL divergence, which has introduces additional technical hurdles.

We stress that the focus of this work is not in identifying new instances of topic modeling that were previously not known to be efficiently solvable, but rather providing understanding about the behaviour of variational inference, the defacto method for learning and inference in the context of topic models.

2 Latent variable models and EM

We briefly review expectation-maximization (EM) and variational methods. We will be dealing with latent variable models, where the observations X_i are generated according to a distribution

$$P(X_i|\theta) = P(Z_i|\theta)P(X_i|Z_i, \theta)$$

where θ are parameters of the models, and Z_i are termed as hidden variables. Given the observations X_i, a common task in this context is to find the maximum likelihood value of the parameter θ:

$$\arg\max_{\theta} \sum_i \log(P(X_i|\theta))$$
The expectation-maximization (EM) algorithm is an iterative method to achieve this, dating all the way back to (Dempster et al., 1977) and (Sundberg, 1974) in the 70s. In the above framework it can be formulated as the following procedure, maintaining estimates \(\theta^t, \tilde{P}^t(Z) \) of the model parameters and the posterior distribution over the hidden variables:

- **E-step**: Compute the distribution
 \[\tilde{P}^t(Z) = P(Z|X, \theta^{t-1}) \]
- **M-step**: Set \(\theta^t \) to be
 \[\arg\max_{\theta} \sum_i E_{\tilde{P}^{t-1}}[\log P(X_i, Z_i|\theta)] \]

The implicit assumption above, however, is that both steps can be performed efficiently. Sadly, that is not the case in many scenarios. A common approach then is to relax the above formulation to a tractable form. This is achieved by choosing an appropriate family of distributions \(F \), and perform the following updates:

- **Variational E-step**: Compute the distribution \(\tilde{P}^t(Z) = \min_{P_t \in F} KL(P_t(Z)||P(Z|X, \theta^{t-1})) \)
- **Variational M-step**: Set \(\theta^t \) to be \(\arg\max_{\theta} \sum_i E_{\tilde{P}^{t-1}}[\log P(X_i, Z_i|\theta)] \)

By picking the family \(F \) appropriately, it’s often possible to make both steps above run in polynomial time. None of the above two families of approximations, however, usually come with any guarantees. With EM, the problem is ensuring that one does not get stuck in a local optimum. With variational EM, additionally, we are faced with the issue of potentially not even exploring the entire space of solutions, so the algorithm might completely miss the global optimum.

3 Topic models

We will focus on a particular latent variable model, which is very often studied - topic models (Blei et al., 2003). The generative model is as follows: there is a prior distribution over topics \(\alpha \). Then, each document is generated by the following process:

- Sample a proportion of topics \(\gamma_1, \gamma_2, \ldots, \gamma_k \) according to \(\alpha \).
- For each position in the document, pick a topic according to a multinomial distribution with parameters \(\gamma_1, \ldots, \gamma_k \).
- Conditioned on topic \(i \) being picked at that position, pick a word \(j \) from a multinomial with parameters \((\beta_{i,1}, \beta_{i,2}, \ldots, \beta_{i,k}) \)

In this paper we will be interested in topic priors which result in *sparse* documents and where the correlation of the distributions for different topics is small. These types of properties are very commonly assumed, and are satisfied by the Dirichlet prior, one of the most popular priors in topic modeling. (Originally introduced by (Blei et al., 2003).) The body of work on topic models is vast (M and Lafferty, 2009). Prior theoretical work relevant in the context of this paper includes the sequence of works by (Arora et al., 2012b),(Arora et al., 2013), as well as (Anandkumar et al., 2013), (Ding et al., 2013), (Ding et al., 2014) and (Bansal et al., 2014). These works make related assumptions on the topic model instances that we study.

(Arora et al., 2012b) and (Arora et al., 2013) assume that the topic-word matrix contains “anchor words”. This means that each topic has (at least one) word, which appears in that topic, and no other. (So, the appearance of this word is a strong indicator that the document is at least partially about that topic.) (Anandkumar et al., 2013) on the other hand works with a certain expansion assumption on the word-topic graph, which says that if one takes a subset \(S \) of topics, the number of words in the support of these topics should be at least \(|S| + s_{\text{max}} \), where \(s_{\text{max}} \) is the maximum support size of any topic. Neither paper needs any assumption on the topic priors, and can handle (almost) arbitrarily short documents.

The assumptions we will make on the word-topic matrix will be very related to the ones in the above sequence of works, however we will focus on the scenario where the documents are very long, so that the
empirical counts of each of the words are close to their expected counts. Our priors will also be much more structured.

The case where the documents are very short seems significantly more difficult. Namely, in that case there are two issues to consider. One is proving that the variational assumption does not lose much (i.e. if the variational inference updates do reach the global optimum, it is close to the ground truth still.). The second is proving that the updates, do actually reach the global optimum. Assuming long documents allows us to focus on the second issue alone, which is already challenging.

On a high level, let’s describe the types of instance we will be dealing with:

- The topics will satisfy the following weighted expansion property: if we take any set S of topics of constant size, for any topic i in this set, the probability mass on words which belong to i, and no other topic in S will be $1-o(1)$ of the total mass of the discriminative topics in topic i. (So, this is a weighted expansion as studied in (Anandkumar et al., 2013), but only over constant sized subsets.)
- The number of topics per document will be small. Furthermore, the probability of including a given topic in a document is almost independent of any other topics that might be included in the document already.
- For each word j, and a topic i it appears in, there will be a decent proportion of documents that contain topic i and no other topic containing j. These can be viewed as “local anchor documents” for that word-pair topic.
- The documents will also have a “dominating topic”, similarly as in (Bansal et al., 2014).

4 Variational relaxation for learning topic models

In this section we briefly review variational relaxation for topic models following closely the description in (Blei et al., 2003). Throughout the paper, we will denote by N the total number of words and K the number of topics. We will assume that we are working with a sample set of D documents. We will also denote by $\hat{f}_{d,j}$ the fractional count of word j in document d (i.e. $\hat{f}_{d,j} = \text{Count}(j)/N_d$, where $\text{Count}(j)$ is the number of times word j appears in the document, and N_d is the number of words in the document).

For topic models variational updates are a way to approximate the computationally intractable E-step (Sontag and Roy, 2000) as described in Section 2. To get a variational version of the above algorithm, one instead sets $P_t(Z, \gamma) = \min_{P \in \mathcal{F}} \text{KL}(P_t(Z, \gamma)||P(Z, \gamma|X, \theta^{t-1})$ for some family \mathcal{F} of distributions. The family \mathcal{F} one usually considers is $P_t(\gamma, Z) = q(\gamma)\prod_i q_i'(Z_i)$, i.e. a completely factorized distribution in all the variables.

In (Blei et al., 2003) for distributions of this type, it’s shown that the optimal distributions q, q_i' are a Dirichlet distribution for q, with parameter $\hat{\gamma}$ let’s say, and multinomials for q_i', with parameters ϕ_i, let’s say. Furthermore, the variational EM updates are shown to have the form:

- In the E-step, one runs to convergence the following updates on the ϕ and $\hat{\gamma}$ parameters:

$$\phi_{d,j,i} \propto \beta_{i,w_{d,j}} e^{E_q[\log(\theta_d)|\gamma_d]}$$

$$\hat{\gamma}_{d,i} = \alpha_{d,i} + \sum_{j=1}^{N_d} \phi_{d,j,i}$$

- In the M-step, one updates the β and parameters as follows:

$$\beta_{i,j} \propto \sum_{d=1}^{D} w_{d,j,j'} \sum_{j'=1}^{N_d} \phi_{d,j,i} w_{d,j,j'}$$

where $w_{d,j}$ is the word in document d, position j; $w_{d,j,j'}$ is an indicator variable which is 1 if the word in position j' in document d is word j.

The α Dirichlet parameters do not have a closed form expression and are optimized via gradient descent.
4.1 Simplified updates in the long document limit

From the above updates it is difficult to give assign an intuitive meaning to the $\tilde{\gamma}$ and ϕ parameters. (Indeed, it’s not even clear what one would like them to be ideally at the global optimum.) As we mentioned above, through out, we will be working in the large document limit - and this will simplify the updates. In particular, in the E-step, in the large document limit, the second term in the update equation for $\tilde{\gamma}$ has a vanishing contribution. In this case, we can simplify the E-update as:

$$\phi_{d,j,i} \propto \beta_{t}^{i,j} \gamma_{d,i}^{t}$$

$$\gamma_{d,i}^{t+1} \propto \sum_{j=1}^{N_d} \tilde{f}_{d,j} \phi_{d,j,i}$$

The M-step will remain as is - but we will focus on the β only, and ignore the α updates - as the α estimates disappeared from the E updates:

$$\beta_{t+1}^{i,j} \propto \sum_{d=1}^{D} \tilde{f}_{d,j} \gamma_{d,i}^{t}$$

While one can just view these updates as an approximate form of the variational updates in (Blei et al., 2003), it is possible to also view them in a more principled manner. The updates in (Blei et al., 2003) are trying to approximate the posterior distribution $P(Z|X, \gamma^{t-1}, \beta^{t-1})$ by a a product distribution $q(\gamma) \cdot \prod_{i=1}^{N} q_i'(Z_i)$, by first approximating this posterior by $P(Z|X, \gamma^{\ast}, \alpha^{t-1}, \beta^{t-1})$, where γ^{\ast} is the max-likelihood value for γ, and then approximating $P(Z|X, \gamma^{\ast}, \alpha^{t-1}, \beta^{t-1})$ as a product distribution.

It is easy to see that in the large document limit, this approximation should not be much worse than the one in (Blei et al., 2003), as the posterior concentrates around the maximum likelihood value. Finally, we will rewrite the above equations in a slightly more convenient form:

- The E-step becomes: Iterate
 $$(\gamma_{d,i}^{t+1} = \gamma_{d,i}^{t} \sum_{j=1}^{N} \frac{\tilde{f}_{d,j}}{f_{d,j}} \beta_{t}^{i,j}$$
 until convergence.

- The M-step becomes:
 $$\beta_{t+1}^{i,j} = \beta_{t}^{i,j} \frac{\sum_{d=1}^{D} \frac{\tilde{f}_{d,j}}{f_{d,j}} \gamma_{d,i}^{t}}{\sum_{d=1}^{D} \gamma_{d,i}^{t}}$$

4.2 Alternating KL minimization and thresholded updates

We will further modify Equations 4.1 and 4.2. In a slightly modified form, the updates were used in a paper by (Lee and Seung, 2000) in the context of non-negative matrix factorization. There the authors proved that under these updates $\sum_{d=1}^{D} KL(f_{d,j}||\tilde{f}_{d,j})$ is non-decreasing. One can very easily modify their arguments to show that the same property is preserved if the E-step is replaced the step $\forall d, \gamma_{d,j}^{t+1} = \min_{\gamma_{d,j}^{t}} KL(\tilde{f}_{d,j}||f_{d,j})$ - i.e. minimizing the KL divergence between the counts and the "predicted counts" with respect to the γ variables. (In fact, the iterating the γ updates above is a way to solve this convex minimization problem via a version of gradient descent which makes multiplicative updates, rather than additive updates.)

Thus the updates are essentially performing alternating minimization using the KL divergence as the distance measure (with the difference that for the β variables one essentially just performs a single gradient step rather than a full alternating minimization.) In this paper, we will make a modification of the M-step which is very natural. Intuitively, the update for $\beta_{t,j}$ goes over all appearances of the word j and adds the "fractional assignment" of the word j to topic i under our current estimates of the variables β, γ. In the modified version, when doing the update for the β variables, rather than averaging over all documents, we will only average over those documents d, where $\gamma_{d,i}^{t} > \gamma_{d,i}^{t'}, \forall i' \neq i$.

6
The intuitive reason behind this modification is the following. The EM updates we are studying work with the KL divergence, which puts more "weight" on the larger entries. Thus, for the documents in D_i, the estimates for $\gamma_{d,i}^t$ should be better than they might be in the documents $D \setminus D_i$. (Of course, since the terms $f_{d,j}^t$ involve all the variables $\gamma_{d,i}^t$, it is not a priori clear that this modification will gain us that much, but we will prove that it actually does.) Formally, we discuss the following three modifications of variational inference (we call them tEM, for thresholded EM):

- **KL-tEM:**
 - E-step: Solve the following convex program for each document d:

 \begin{align*}
 \min_{\gamma_{d,i}^t} \sum_j \tilde{f}_{d,j} \log \left(\frac{\tilde{f}_{d,j}}{f_{d,j}} \right), \text{ s.t.} \\
 (1): \gamma_{d,i}^t \geq 0 \\
 (2): \sum_i \gamma_{d,i}^t = 1 \\
 (3): \gamma_{d,i}^t = 0 \text{ if } i \text{ does not belong to document } d
 \end{align*}

 \begin{algorithm}[H]
 \medskip
 \caption{KL-tEM}
 \begin{align*}
 \text{M-step:} \\
 &\text{Set } D_i \text{ to be the set of documents } d, \text{ s.t. } \gamma_{d,i}^t > \gamma_{d,i'}^t, \forall i' \neq i. \\
 &\text{Set } \beta_{i,j}^{t+1} = \beta_{i,j}^t \frac{\sum_{d \in D_i} \tilde{f}_{d,j} \gamma_{d,i}^t}{\sum_{d \in D_i} \gamma_{d,i}^t} \\
 \end{align*}
 \text{Iterative tEM:}
 - E-step: Initialize $\gamma_{d,i}^t$ uniformly among the topics not in the support of document d.
 - M-step: Same as before.

- **Incomplete tEM:**
 - E-step: Starting with the values $\gamma_{d,i}^t$ that we got in the previous iteration, just perform one step of 4.3.
 - M-step: Same as before.

5 Initializations

We will consider two different strategies for initialization. First, we will look at the case where we initialize with the topic-word matrix, and the documents having the correct support. The analysis of tEM in this case will be the cleanest. While the focus of the paper is tEM, we’ll show that this initialization can actually be done for our case efficiently as well. We will be using an overlapping clustering algorithm inspired by (Arora et al., 2014)

Second, we’ll look at an initialization that is inspired by what the current LDA-c implementation uses. Concretely, we’ll assume that the user has some way of finding, for each topic i, a seed document in which the proportion of topic i is at least C_l. Then, when initializing, one treats this document as if it were pure: namely one sets $\beta_{i,j}^0$ to be the fractional count of word j in this document. We do not attempt to design an algorithm to find these documents.
6 Case study 1: Sparse topic priors, support initialization

Let us start with a simple case. We’ll split up the assumptions into those that apply to the topic-model matrix, and the topic prior. First of all, all of our results only hold in the long documents regime: we will assume for each document \(d\), the number of words is large enough, so that one can find values \(\gamma^*_{d,i}\), such that

\[
\tilde{f}_{d,j} = (1 \pm \epsilon) \sum_{i=1}^{K} \gamma^*_{d,i} \beta^*_{i,j}
\]

Let’s consider the topic-word matrix. We will impose conditions that ensure the topics don’t ”overlap” too much. Namely, we will assume:

- **Words are discriminative**: Each word appears in \(o(K)\) topics.
- **Almost disjoint supports**: \(\forall i, i’, \) if the intersection of the supports of \(i\) and \(i’\) is \(S\),

\[
\sum_{j \in S} \beta^*_{i,j} \leq o(1) \cdot \sum_{j} \beta^*_{i,j}
\]

We also need assumptions on the topic priors. The most important ones are that the documents generated are sparse, and there is virtually no dependence between the topics. Namely, conditioning on the size and presence of a certain topic should not (significantly) influence the probability of another topic being included in a document. Notice that this is an analogue of the types of distributions that have been analyzed for dictionary learning (Arora et al., 2015). We also need that each topic is roughly equally likely to appear in a document, and equally likely to be the largest one; and that there is a small gap between the largest and next-to-largest topic in the documents.

As a slight technical condition, we will also assume that all \(\gamma^*_{d,i}, \beta^*_{i,j}\) are at least \(\frac{1}{\text{poly}(N)}\). Intuitively, this condition says that if a topic is present, it needs to be reasonably large. Similarly, if a word has a non-zero probability in a given topic - this probability needs to be something reasonable as well. Such assumptions also appear in the context of dictionary learning (Arora et al., 2015).

Formally, the assumptions are as follows:

- **Sparse documents**: Each of the documents in our samples has at most \(T = O(1)\) topics.
- **Slightly gapped documents**: For each document, the largest topic \(i_0 = \arg\max_i \gamma^*_{d,i}\) is such that for any other topic \(i’\), \(\gamma^*_{d,i'} - \gamma^*_{d,i_0} > \rho\) for some (arbitrarily small) constant \(\rho\).
- **Dominant topic equdistribution**: The probability that topic \(i\) is such that \(\gamma^*_{d,i} > \gamma^*_{d,i’, i’ \neq i}\) is \(\Theta(1/K)\).
- **Independent topic inclusion**: For any set \(S\) of topics, s.t. \(|S| \leq T - 1\),

\[
\Pr[\gamma^*_{d,i} > 0 | \gamma^*_{d,i’, i’ \in S}] = \Theta\left(\frac{1}{K}\right)
\]

- **Weak topic correlations**: For all sets \(S\) with \(o(K)\) topics, it must be the case that:

\[
\mathbb{E}[\gamma^*_{d,i} | \gamma^*_{d,i'} \text{ is dominating}] = (1 \pm o(1))\mathbb{E}[\gamma^*_{d,i} | \gamma^*_{d,i'} \text{ is dominating}, \gamma^*_{d,i’, i’} = 0, i’ \in S]
\]

These assumptions are a less smooth version of what holds for the Dirichlet prior. Namely, it’s a folklore result that Dirichlet draws are sparse with high probability, for a certain reasonable range of parameters. This was formally proven by (Telgarsky, 2013) - though sparsity there implies a small number of ”large” coordinates, for some suitable definition of large. We assume that there is a small number of non-zero coordinates. It’s also well known that Dirichlet essentially cannot enforce any correlation between different topics. \(^1\)

\(^1\)We show analogues of the weak topic correlations property and equidistribution in the appendix for completeness sake.
The above assumption can be viewed as a local notion of separability of the model, in the following sense. First, suppose that we look at a particular fixed document \(d \). For each topic \(i \) that participates in that document, let’s look at the set of words \(j \), which only appear in support of topic \(i \) in the document. In some sense, these words are like local anchor words for that document: these words appear only in one topic of that document. Because of the ”almost disjoint supports” property, there will be a decent mass on these words in each document.

Similarly, let’s look at a particular non-zero element \(\beta^*_{i,j} \) of the topic-word matrix. Let’s call \(D_i \) the set of documents where \(\beta^*_{i,j} = 0 \) for all other topics \(i' \neq i \) appearing in that document. In some sense, these documents are like local anchor documents for that word-topic pair: in those documents, the word appears as part of only topic \(i \).

We will prove the following

Theorem 1. Given an instance of topic modelling satisfying the properties specified above, where the number of documents is \(\Omega(K^{\log^3 N}) \), if we initialize the supports on the \(\beta^*_{i,j} \) and \(\gamma^*_{d,i} \) variables correctly, after \(O(\log(1/\epsilon')) \) KL-tEM, iterative-tEM updates or incomplete-tEM updates, we recover the topic-word matrix and topic proportions to multiplicative accuracy \(1 + \epsilon' \), for any \(\epsilon' \) s.t. \((1 + \epsilon') \leq \frac{1}{(1-\gamma)} \).

Theorem 2. If the number of documents is \(\Omega(K^4 \log^2 K) \), there is a polynomial-time procedure which with high probability correctly identifies the supports of the \(\beta^*_{i,j} \) and \(\gamma^*_{d,i} \) variables.

6.1 Provable convergence of tEM

The correctness of the tEM updates is proven in 3 steps:

- **Identifying large topic:** First, we prove that if \(\gamma^*_{d,i} \) is the largest one among all topics in the document, topic \(i \) is actually the largest topic.

- **Phase I: Getting constant multiplicative factor estimates:** After initialization, we show that after at most logarithmic number of rounds, we will get to variables \(\beta^t_{i,j}, \gamma^t_{d,i} \) which are within a constant multiplicative factor from \(\beta^*_{i,j}, \gamma^*_{d,i} \).

- **Phase II (Alternating minimization - lower and upper bound evolution):** Once the \(\beta \) and \(\gamma \) estimates are within a constant factor of their true values, we show that the lone words and documents have a boosting effect: they cause the multiplicative upper and lower bounds to improve at each round.

The updates we are studying are multiplicative, not linear in structure, and the objective they are optimizing is non-convex, so the standard techniques do not work. The intuition behind our proof in Phase II can be described as follows.

Let’s look at one of the updates for one of the variables, say \(\beta^t_{i,j} \). We show that \(\beta^{t+1} \approx \alpha \beta^*_{i,j} + (1-\alpha)C^t \beta^*_{i,j} \) for some constant \(C^t \) at time step \(t \). \(\alpha \) is something fairly large (one should think of it as \(1 - o(1) \)), and comes from the existence of the local anchor documents. A similar equation holds for the \(\gamma \) variables, in which case the ”good” term comes from the local anchor words. Furthermore, we show that the error in the \(\approx \) decreases over time, as does the value of \(C_t \), so that eventually we can reach \(\beta^*_{i,j} \).

The analysis bears a resemblance to the state evolution and density evolution methods in error decoding algorithm analysis - in the sense that we end up maintaining a “quantity” about the evolving system, and analyze how it evolves under the specified iterations. The quantities we maintain are quite simple - upper and lower multiplicative bounds on our estimates at any round \(t \).

6.2 Initialization

Let’s recall, the goal of this phase is to recover the supports - i.e. to find out which topics are present in a document, and identify the support of each topic. We will find the topic supports first. This portion uses an idea inspired by (Arora et al., 2014) in the setting of dictionary learning. Roughly speaking, we will devise a test, which will take as input two documents \(d, d' \), and will try to determine if the two documents have a topic in common or not. The test will have no false positives, i.e. will never say NO, if the documents do
have a topic in common, but might say NO even if they do. We then ensure that with high probability, for each topic we find a pair of documents intersecting in that topic, such that the test says yes.\footnote{The detailed initialization algorithm is included in the appendix.}

7 Case study 2: Dominating topics, seeded initialization

Next, we’ll look at an initialization which is essentially what the current implementation of LDA-c uses. Namely, we will call the following initialization a seeded initialization:

- For each topic i, the user supplies a document d, in which $\gamma_{d,i}^* \geq C_i$.
- We treat the document as if it only contains topic i and initialize with $\beta_{i,j}^0 = f_{d,j}^*$.

In this section, we show how to modify our analysis to show that with a few more assumptions to the ones from the previous section, this strategy works as well. Firstly, we will have to assume anchor words, that make up quite a large fraction of the mass of each topic. Second, we will also assume that the words from the previous section, this strategy works as well. Firstly, we will have to assume anchor words, that make up quite a large fraction of the mass of each topic. Second, we will also assume that the words have a bounded dynamic range, i.e. the values of each word in two different topics are within a constant B from each other. The documents are still gapped, as before, but the gap now must be quite a bit larger. Finally, in roughly $1/B$ fraction of the documents where topic i is dominant, that topic has proportion $1 - \delta$, for some small (but constant) δ. A similar assumption (a small fraction of almost pure documents) appeared in a recent paper by (Bansal et al., 2014). Formally, we have:

- Large fraction of anchors: Each topic i has anchor words, such that their total weight is at least p.
- Small dynamic range: For each discriminative words, if $\beta_{i,j}^* \neq 0$ and $\beta_{i,j}^* \neq 0$, $\beta_{i,j}^* \leq B\beta_{i,j}^*$.
- Small fraction of $1 - \delta$ dominant documents: Among all the documents where topic i is dominating, in a $8/B$ fraction of them, $\gamma_{d,i}^* \geq 1 - \delta$, where
 \[\delta := \min \left(\frac{C_i^2}{2B^2}, \frac{1}{1 - \epsilon} \frac{1 - 2}{p^2} \sqrt{\frac{1}{2} \left(\log \left(\frac{1}{C_i} \right) + (1 - p) \log B \right) + \left(1 - \sqrt{C_i} \right)} \right) \]

- Gapped documents: In each document, the largest topic has proportion at least C_i, and all the other topics are at most C_s, s.t.
 \[C_i - C_s \geq \frac{1}{1 - \epsilon} \frac{2}{p} \sqrt{\frac{1}{2} \left(\log \left(\frac{1}{C_i} \right) + (1 - p) \log B \right) + \left(1 - \sqrt{C_i} \right)} \]

The dependency between the parameters B, p, C_i is a little difficult to parse, but if one thinks of C_i as $1 - \eta$ for η small, and $p \geq 1 - \frac{1}{\log \eta}$, since $\log \left(\frac{1}{C_i} \right) \approx 1 + \eta$, roughly we want that $C_i - C_s \gg \frac{2}{p} \sqrt{\eta}$. (In other words, the weight we require to have on the anchors depends only logarithmically on the range B.)

In the documents where the dominant topic has proportion $1 - \delta$, a similar reasoning as above gives that we want is approximately:

\[\gamma_{d,i}^* \geq 1 - \frac{1 - 2\eta}{2B^2} + \frac{2}{p} \sqrt{\eta} \]

The precise statement is as follows:

Theorem 3. Given an instance of topic modelling satisfying the properties specified above, where the number of documents is $\Omega(\frac{K\log^2 N}{\epsilon^2})$, if we initialize with seeded initialization, after $O(\log(1/\epsilon'))$ of KL-tEM updates, we recover the topic-word matrix and topic proportions to multiplicative accuracy $1 + \epsilon'$, if $1 + \epsilon' \geq \frac{1}{1 - \epsilon}$.

The proof is carried out in a few phases:

- **Phase I: Anchor identification:** First, we will show that as long as we can identify the dominating topic in each of the documents, the anchor words will make progress, in the sense that after $\approx \log N$ number of rounds, the values for the topic-word estimates will be almost zero for the topics for which word w is not an anchor. For topic for which a word is an anchor we’ll have a good estimate.
• **Phase II: Discriminative word identification**: Next, we show that as long as we can identify the dominating topic in each of the documents, and the anchor words were properly identified in the previous phase, if $\beta_{i,j}^* = 0$, $\beta_{i,j}^t$ will keep dropping and quickly reach almost zero. The values corresponding to $\beta_{i,j}^* \neq 0$ will be well estimated.

• For Phase I and II above, we will need to show that the dominating topic can be identified at any step. Here we’ll leverage the fact that the dominating topic is sufficiently large, as well as the fact that the anchor words have quite a large weight.

• **Phase III: Alternating minimization**: Finally, we show that after Phase I and II above, we are back to the scenario of the previous section: namely, there is improvement in each next round.

7.1 Proof summary

7.1.1 A useful lemma

Due to our initialization, even in the beginning, each topic is “positively correlated” with the correct values. (Since initially, each topic is a mixture of some topics, where the largest topic has the largest proportion.) During a γ update, we are trying to minimize $KL(f_d || f_{d,j})$ with respect to the γ_d variables, so we need a way of arguing that whenever the β estimates are not too bad, minimizing this quantity provides an estimate about how far the optimal γ variables are from γ^*. We will show the following:

Lemma 4. If, for all i, $KL(\beta_{i,j}^* || \beta_{i,j}^t) \leq R_{\beta}$, and $\min_{\gamma_d} KL(f_{d,j} || f_{d,j}) \leq R_f$, after running a KL divergence minimization step with respect to the γ_d variables, we get that $||\gamma_d^* - \gamma_d||_1 \leq \sqrt{\frac{1}{2}R_{\beta} + \frac{1}{2}R_f}$.

This simple lemma critically uses the existence of anchor words. Namely, we use the simple fact that

$$||\beta^* v||_1 \geq p||v||_1$$

Intuitively, if one thinks of v as $\gamma^* - \gamma^t$, $||\beta^* v||_1$ will be large if $||v||_1$ is large. Hence, if $||\beta^* - \beta^t||_1$ is not too large, whenever $||f^* - f^t||_1$ is small, so is $||\gamma^* - \gamma^t||_1$. We will be able to maintain R_{β} and R_f small enough throughout the iterations, so that we can identify the largest topic in each of the documents.

7.1.2 Maintaining good lower bounds

The only structural property we will be able to extrapolate from estimates like the above on KL divergences, will be good estimates on the large topics in each of the document. Using these estimates, we will be able to show that the if j is an anchor for topic i, $\beta_{i,j}^t$ will never be too small, while for all the other i', $\beta_{i',j}^t$ will rapidly decay. A similar, but more involved argument will provide an analogous bound for the discriminative words as well. In this manner, in $\approx \log N$ rounds, we will argue that we that we recover the supports of the β matrix and the documents, which reduce us to the support-based initialization case from the previous section.

8 On common words

We briefly make a remark on common words: words such that $\beta_{i,j}^* \leq B\beta_{i,j}^*, \forall i, i'$. In this case, the proofs above, as they are, will not work. The reason is that we won’t be able to guarantee that the common words are making progress, since they do not have any lone documents.

However, if $1 - \frac{1}{\sqrt{\log n}}$ fraction of the documents where topic i is dominant contains topic i with proportion $1 - \frac{1}{\sqrt{\log n}}$ and furthermore, in each topic, the weight on these words is no more than $\frac{1}{\sqrt{\log n}}$, then our proofs still work with either initialization. The idea for the argument is the following: When the dominating topic

3Again, we stress that we want to make analyze whether variational inference will work in this case or not. If we just want to handle common words algorithmically, it would be very easy: it’s not difficult to detect what the common words are and filter them out initially, then perform the variational inference updates over the rest of the words only.

4See Appendix
is very large, we show that $\frac{f^*_{t,d,j}}{f_{t,d,j}}$ is very highly correlated with $\frac{\beta^*_{i,j}}{\beta_{i,j}}$, so these documents behave like anchor documents.

Namely, one can show:

Theorem 5. In either case study, if we additionally have common words satisfying the properties specified above, after $O(\log(1/\epsilon'))$ of KL-tEM updates, we recover the topic-word matrix and topic proportions to multiplicative accuracy $1 + \epsilon'$, if $1 + \epsilon' \geq \frac{1}{1-\epsilon}$.

9 Discussion and open problems

In this work we provide the first characterization of sufficient conditions when variational inference leads to optimal parameter estimates for topic models. Our proofs also suggest possible hard cases for variational inference, namely instances with large dynamic range compared to the proportion of anchor words.

Experimentally it’s not hard to construct such instances where support initialization performs very badly. The types of instances we focused on had topic-word matrices which had only anchor words and common words. We made no effort to explore the optimal relationship between the dynamic range and the proportion of anchor words, as it’s not clear what are the “worst case” instances for this trade-off.

Seeded initialization, on the other hand, empirically works much better. We found that when $C_l \geq 0.6$, and when the proportion of anchor words is as low as 0.2, variational inference recovers the ground truth, even on instances with fairly large dynamic range. Our current proof methods are too weak to capture this observation. (In fact, even the largest topic is sometimes misidentified in the initial stages, so one cannot even run tEM, only the vanilla variational inference updates.) Analyzing the dynamics of variational inference in this regime is a challenging problem which would require significantly new ideas, and we leave it as an important open problem for future work.

Acknowledgements

We would like to thank Sanjeev Arora for helpful discussions in various stages of this work.
A Notation throughout supplementary material

We will use \(\simeq, \lesssim, \gtrsim \) to denote that the corresponding (in)equality is correct up to constants. We will use \(\Leftrightarrow \) to denote equivalence. We will say that an event happens with high probability, if it happens with probability \(1 - \frac{1}{K^c} \) or \(1 - \frac{1}{N^c} \) for some constant \(c \).

B Case study 1: Sparse topic priors, support initialization

B.1 Provable convergence of tEM

As a reminder, the theorem we want to prove is:

Theorem 6. Given an instance of topic modelling satisfying the Case study 1 properties specified above, where the number of documents is \(\Omega \left(\frac{K \log^2 N}{\epsilon^2} \right) \), if we initialize the supports on the \(\beta_{i,j}^t \) and \(\gamma_{d,i}^t \) variables correctly, after \(\tilde{O}(\log(1/\epsilon')) \) KL-tEM, iterative-tEM updates or incomplete-tEM updates, we recover the topic-word matrix and topic proportions to multiplicative accuracy \(1 + \epsilon' \), for any \(\epsilon' \) s.t. \((1 + \epsilon') \leq \frac{1}{(1 - \epsilon)^7} \).

The general outline of the proof will be the following.

- **Thresholding:** For the modified tEM updates, we need to make sure that the topic with maximal \(\gamma_{d,i}^t \) is the dominant.

- **Phase I: Getting constant multiplicative factor estimates:** First, we’ll show that after initialization, after \(\approx \log n \) number of rounds, we will get to variables \(\beta_{i,j}^t, \gamma_{d,i}^t \) which are within a constant multiplicative factor from \(\beta_{i,j}^\star, \gamma_{d,i}^\star \).
 - Lower bounds on the \(\beta \) and \(\gamma \) variables: We’ll show that determining the supports of the documents and the topic-word matrix, as well as being able to identify the documents in which topic \(i \) is large enough to ensure that all the \(\beta_{i,j}^t \) and \(\gamma_{d,i}^t \) variables are lower bounded by \(\frac{1}{C_{\beta}^t} \beta_{i,j}^\star \) and \(\frac{1}{C_{\gamma}^t} \gamma_{d,i}^\star \) respectively for some constants \(C_{\beta}^t \geq 1, C_{\gamma}^t \geq 1 \).
 - Improving upper bounds on the \(\beta_{i,j}^t \) values: We show that, if the above two properties are satisfied, we can get a multiplicative upper bound of the \(\beta_{i,j}^t \) values, which strictly improves at each step until it reaches a constant. This improvement is very fast: we only need a logarithmic number of steps.

- **Phase II (Alternating minimization - lower and upper bound evolution):** Once the \(\beta \) and \(\gamma \) estimates are within a constant factor of their true values, we show that the lone words and documents have a boosting effect: they cause the multiplicative upper and lower bounds to improve at each round.

A word about incorporating the "correct supports" assumption in our algorithms. For the \(\beta \) variables this is obvious: we just set \(\beta_{i,j}^t = 0 \) if \(\beta_{i,j}^\star = 0 \). For the \(\gamma \) variables it’s also fairly straightforward. In KL-tEM we mean simply that in the convex program above, we constrain \(\gamma_{d,i}^t = 0 \) if \(\gamma_{d,i}^\star = 0 \).

In the iterative version, this just means that before starting the \(\gamma \) iterations, we set the initial value to 0 if \(\gamma_{d,i}^\star = 0 \), and uniform among the rest of the variables. Same for the incomplete version.

To avoid wordiness, whenever we say "the supports are correct", the above is what we will mean.

We will use \(t \) to count the iterations for \(\beta \) variables. Put another way, \(\gamma_{d,i}^t \) is the value we get for \(\gamma_{d,i} \) after the \(\beta \) variables were updated to \(\beta_{i,j}^t \). (Which of course, implies, \(\beta_{i,j}^{t+1} \) will be the values we get for the \(\beta \) variables after the \(\gamma \) variables are updated to \(\gamma_{d,i}^t \)).

The proofs are for each of the variants of tEM are similar. For starters, we show everything for KL-tEM, and then just mention how to modify the arguments to get the results for the other variants in section B.2.
B.1.1 Thresholding

First, we show that the thresholding operation "works". Namely, we show that if $\gamma^t_{d,i} > \gamma^t_{d,i'}, \forall i \neq i'$, then $\gamma^*_{d,i}$ is the largest topic in the document (there is a unique one by the "slightly gapped documents" property). Furthermore, we can say that $\frac{1}{2} \gamma^t_{d,i} \leq \gamma^*_{d,i} \leq 2 \gamma^t_{d,i}$.

Lemma 7. Fix a document d. Let the supports of the γ and β variables be correct. Then, after a γ iteration, if $\gamma^t_{d,i} > \gamma^t_{d,i'}, i \neq i'$, $\gamma^*_{d,i}$ is the largest topic in the document. Furthermore, $\frac{1}{2} \gamma^t_{d,i} \leq \gamma^*_{d,i} \leq 2 \gamma^t_{d,i}$.

Proof. Since there are a constant number of topics in the document, the largest topic has proportion $\Omega(1)$.

Consider the KL-tEM convex optimization problem. The KKT conditions are easily seen to imply\(^5\):

$$\sum_j \frac{\tilde{f}_{d,j}}{f_{d,j}} \beta^t_{i,j} \gamma^t_{d,i} = 1 \quad (B.1)$$

For each topic i, since we are considering a constrained optimization problem, it has to be the case that it either satisfies B.1, $\gamma^t_{d,i} = 0$, $\gamma^*_{d,i} = 1$.

Let’s assume first that i satisfies B.1. Then,

$$\gamma^t_{d,i} = \sum_j \frac{\tilde{f}_{d,j}}{f_{d,j}} \beta^t_{i,j} \gamma^t_{d,i} \leq \sum_{j: \beta^t_{i,j} \neq 0} \tilde{f}_{d,j}$$

Let’s call the words j, which only appear in the support of topic i in the document *lone* for that topic, and let’s denote that set as L_i.

If L_i are the lone words for topic i, $\sum_{j \notin L_i, \beta^t_{i,j} \neq 0} \tilde{f}_{d,j} = T o(1) = o(1)$, so

$$\gamma^t_{d,i} \leq \sum_{j \in L_i} (1 + \epsilon) \beta^t_{i,j} \gamma^t_{d,i} + o(1) \leq (1 + \epsilon) \gamma^*_{d,i} + o(1) \leq \gamma^*_{d,i} + o(1)$$

On the other hand, $\gamma^*_{d,i} \geq \sum_{j \in L_i} \beta^t_{i,j} \gamma^*_{d,i} \geq (1 - \epsilon)(1 - o(1)) \gamma^*_{d,i} \geq (1 - o(1)) \gamma^*_{d,i}$, so $\gamma^t_{d,i} \geq \gamma^*_{d,i} - o(1)$.

Since there is a constant gap of ρ between the largest topic and the next largest one, the maximum $\gamma^*_{d,i}$ is indeed the largest topic in the document. Furthermore, since $(1 - o(1)) \gamma^*_{d,i} \leq \gamma^t_{d,i} \leq (1 + o(1)) \gamma^*_{d,i}$, clearly $\frac{1}{2} \gamma^t_{d,i} \leq \gamma^t_{d,i} \leq 2 \gamma^*_{d,i}$ follows as well.

On the other hand, we claim no topic which is in the support of a document d can actually have $\gamma^t_{d,i} = 0$, or $\gamma^t_{d,i} = 1$.

If the former happens, it’s easy to see that $\sum_j \tilde{f}_{d,j} \log(\frac{f_{d,j}}{\tilde{f}_{d,j}}) = \infty$: one only needs to look at a summand corresponding to a lone word j for topic i. Just by virtue of the way lone words are defined, $\gamma^t_{d,i} = 0$ would imply $f_{d,j} = 0$. It’s clear that one can get a finite value for $\sum_j \tilde{f}_{d,j} \log(\frac{f_{d,j}}{\tilde{f}_{d,j}})$ on the other hand, by just setting $\gamma^t_{d,i} = \gamma^t_{d,i'}$, so $\gamma^t_{d,i} = 0$ cannot happen at an optimum.

Similarly, $\gamma^t_{d,i} = 1$ cannot happen, for in this case there must be some other topic i' in the support of the document, s.t. $\gamma^t_{d,i'} = 0$, and we already proved that cannot happen.

$$\square$$

B.1.2 Lower bounds on the $\gamma^t_{d,i}$ and $\beta^t_{i,j}$ variables

Next, we show that subject to the thresholding being correct, at any point in time t, all the estimates $\gamma^t_{d,i}$ and $\beta^t_{i,j}$ are appropriately lower bounded.

The proof is similar for both the β and γ variables, and both for the KL-tEM and iterative tEM updates, but as mentioned before, we focus on the KL-tEM first.

Lemma 8. Fix a particular document d. Suppose that the supports of the γ and β variables are correct. Then, $\gamma^t_{d,i} \geq (1 - o(1)) \gamma^*_{d,i}$.

\(^5\)One gets these trivially, turning the constraint that $\sum_i \gamma^t_{d,i} = 1$ into a Lagrange multiplier
Proof. Multiplying both sides of \(B.1 \) by \(\gamma_{d,i}^t \), we get

\[
\gamma_{d,i}^t = \sum_{j=1}^{N} \hat{f}_{d,j} \beta_{i,j}^t \gamma_{d,i}^t
\]

As above, let’s split the above sum in two parts: lone words, and non-lone. Then clearly,

\[
\gamma_{d,i}^t \geq \sum_{j \in L_i} (1-\epsilon)\beta_{i,j}^t \gamma_{d,i}^t
\]

For notational convenience, let’s denote \(\tilde{\alpha} = \sum_{j \in L_i} \beta_{i,j}^t \). Let’s estimate \(\tilde{\alpha} \). By the assumption on the size of the intersection of topics,

\[
\sum_{j \notin L_i} \beta_{i,j}^t \leq Tr = o(1)
\]

Hence, \(\tilde{\alpha} \geq (1 - \epsilon)(1 - o(1)) = 1 - o(1) \). So, the claim of the lemma holds.

The lower bound on the \(\beta_{i,j}^t \) values proceeds similarly, but here we will crucially make use of the fact that for the large topics, we have both upper and lower bounds on the \(\gamma_{d,i}^t \) values.

Lemma 9. Suppose that the supports of the \(\gamma \) and \(\beta \) variables are correct. Additionally, if \(i \) is a large topic in \(d \), let \(\frac{1}{2} \gamma_{d,i}^t \leq \gamma_{d,i}^t \leq 2 \gamma_{d,i}^t \). Then, \(\beta_{i,j}^{t+1} \geq \frac{1}{2} (1 - o(1)) \beta_{i,j}^t \).

Proof. Let’s call lone the documents where \(\beta_{i,j}^t = 0 \) for all other topics \(i' \neq i \) appearing in that document for the topic-word pair \((i, j)\). Let \(D_l \) be the set of lone documents. Then, certainly it’s true that

\[
\beta_{i,j}^{t+1} \geq \beta_{i,j}^t \frac{\sum_{d \in D_l} \hat{f}_{d,j} \gamma_{d,i}^t}{\sum_{d=1}^{D} \gamma_{d,i}^t}
\]

However, for a lone document, \(f_{i,j}^d = \gamma_{d,i}^t \cdot \beta_{i,j}^t \) (it’s easy to check all the other terms in the summation for \(f_{i,j}^d \) vanish, because either \(\gamma_{d,i'}^t = 0 \) or \(\beta_{i',j}^t = 0 \)). Hence,

\[
\beta_{i,j}^{t+1} \geq \frac{\sum_{d \in D_l} (1 - \epsilon) \gamma_{d,i}^t \beta_{i,j}^t \gamma_{d,i}^t}{\sum_{d=1}^{D} \gamma_{d,i}^t} = (1 - \epsilon) \beta_{i,j}^t \frac{\sum_{d \in D_l} \gamma_{d,i}^t}{\sum_{d=1}^{D} \gamma_{d,i}^t}
\]

Let’s call \(\alpha = \frac{\sum_{d \in D_l} \gamma_{d,i}^t}{\sum_{d=1}^{D} \gamma_{d,i}^t} \), and let’s analyze it’s value.

By Lemma 52 and Lemma 51,

\[
\sum_{d=1}^{D} \gamma_{d,i}^t \leq (1 + \epsilon) |D_l| E[\gamma_{d,i}^t | \gamma_{d,i}^t \text{ is dominating}, \gamma_{d,i'}^t = 0, \forall i' \neq i \text{ s.t. } j \text{ appears in topic } i']
\]

By the weak topic correlations assumption, then,

\[
\sum_{d=1}^{D} \gamma_{d,i}^t \geq (1 - o(1)) \frac{|D_l|}{|D|}
\]
Furthermore, by the independent topic inclusion property, each of the \(o(K) \) topics other than \(i \) that word \(j \) belongs to appears in a document with probability \(\Theta(1/K) \), so the probability that a document which contains topic \(i \) contains one of them is \(o(1) \), i.e. \(\left| \frac{D_i}{|D|} \right| \). By Lemma 53, furthermore, \(\left| \frac{D_i}{|D|} \right| \geq 1 - o(1) \) when \(\epsilon = o(1) \). Hence, \(\alpha \geq 1 - o(1) \). Altogether, we get that \(\beta_{t+1}^{i,j} \geq \frac{1}{2} (1 - o(1)) \beta_{t}^{i,j} \) as claimed.

\[\square \]

B.1.3 Upper bound on the \(\beta_{t,j}^{i} \) values

Having established a lower bound on the \(\beta_{t,j}^{i} \) variables throughout all iterations, together with the lower bounds on the \(\gamma_{d,i}^{t} \) variables and the good estimates for the large topics, we will be able to prove the upper bound of the multiplicative error of \(\beta_{t,j}^{i} \), keeps improving, until \(\beta_{t,j}^{i} \leq C \beta \). This is a useful upper bound in order to ensure that our algorithm converges.

Lemma 10. Let the \(\beta \) variables have the correct support, and \(\beta_{t,j}^{i} \geq \frac{1}{C} \beta_{t,j}^{i} \), \(\gamma_{d,i}^{t} \leq \frac{1}{C} \gamma_{d,i} \) whenever \(\beta_{t,j}^{i} \neq 0 \), \(\gamma_{d,i}^{*} \neq 0 \). Let \(\beta_{t,j}^{i} = C \beta_{t,j}^{i} \), where \(C \beta \geq 4Cm \), and \(Cm \) is a constant. Then, in the next iteration, \(\beta_{t,j}^{i} \leq C \beta_{t,j}^{i} \), where \(C \beta \leq \frac{Cm}{2} \).

Proof. Without loss of generality, let’s assume \(Cm \geq 2 \). (Since certainly, if the statement of the lemma holds with a smaller constant, it holds with \(Cm = 2 \).)

We proceed similarly as in the prior analyses. We will split the sum into the portion corresponding to the lone and non-lone documents.

Let’s analyze the terms \(\frac{f_{d,j}^{t}}{f_{d,j}^{t}} \gamma_{d,i}^{t} \) corresponding to the non-lone documents.

Now, \(f_{d,j}^{t} \geq \frac{1}{m} f_{d,j}^{t} \), so \(\frac{f_{d,j}^{t}}{f_{d,j}^{t}} \leq (1 + \epsilon) Cm^{2} \). Also, \(\gamma_{d,i}^{t} \leq 2 \gamma_{d,i}^{*} \), since topic \(i \) is the dominant in document \(d \).

Since \(Cm \geq 2 \), \(\frac{f_{d,j}^{t}}{f_{d,j}^{t}} \gamma_{d,i}^{t} \leq (1 + \epsilon) Cm \gamma_{d,i}^{*} \).

Also, note that \(\sum_{d=1}^{D} \gamma_{d,i}^{t} \geq \frac{1}{m} \sum_{d=1}^{D} \gamma_{d,i}^{*} \), again, since \(i \) is the dominant topic.

As usual, let’s denote the set of lone documents \(D_{i} \):

\[
\beta_{t,j}^{i} \leq (1 + \epsilon) Cm \sum_{d \in D_{i}} \beta_{t,j}^{d} \gamma_{d,i}^{*} + \sum_{d \in D/\{D_{i}\}} Cm_{d} \gamma_{d,i}^{*} \beta_{t,j}^{i}.
\]

As in the prior proofs, let’s denote by \(\alpha := \frac{\sum_{d \in D_{i}} \gamma_{d,i}^{*}}{\sum_{d=1}^{D} \gamma_{d,i}^{*}} \).

As in Lemma 9, \(\alpha \geq 1 + o(1) \), so

\[
\beta_{t,j}^{i} \leq (1 + \epsilon) Cm (\alpha \beta_{t,j}^{*} + (1 - \alpha) Cm_{d} \beta_{t,j}^{i})
\]

which in turn implies that

\[
\frac{\beta_{t,j}^{i}}{\beta_{t,j}^{*}} \leq (1 + \epsilon) Cm (\alpha + (1 - \alpha) Cm_{d} \beta_{t,j}^{i})
\]

In order to ensure that \(\frac{\beta_{t,j}^{i}}{\beta_{t,j}^{*}} \leq \frac{Cm_{d}}{2(1+\epsilon) Cm} \), it would be sufficient to prove that

\[
(1 + \epsilon) Cm (\alpha + (1 - \alpha) (Cm_{d} Cm_{\beta}^{i})) < \frac{Cm_{d}}{2}
\]

which is equivalent to

\[
\alpha > \frac{Cm_{d} Cm_{\beta}^{i}}{Cm_{d}} - \frac{Cm_{d}}{2(1+\epsilon) Cm}
\]

Let’s look at the right hand side. As, by assumption, \(Cm_{d} \geq 4Cm \), it follows that

\[
\frac{Cm_{d} Cm_{\beta}^{i}}{Cm_{d}} - \frac{Cm_{d}}{2(1+\epsilon) Cm} < \frac{Cm_{d} Cm_{\beta}^{i}}{Cm_{d}} - \frac{Cm_{d}}{4Cm}
\]

16
Hence, the right hand side is upper bounded by

\[
\frac{C_m^3 - \frac{1}{2(1+\epsilon)C_m}}{C_m^3 - \frac{1}{4C_m}} = 1 - \frac{\frac{1}{2}}{C_m^3 - \frac{1}{4C_m}}
\]

But, since \(C_m\) is bounded by a constant, and \(\alpha = 1 - o(1)\), the claim follows.

B.1.4 Upper bounds on the \(\gamma\) values

Finally, we show that if we ever reach a point where the \(\beta\) values are both upper and lower bounded by a constant, the \(\gamma\) values one gets after the \(\gamma\) step are appropriately upper bounded by a constant. More precisely:

Lemma 11. Fix a particular document \(d\). Let’s assume the supports for the \(\beta\) and \(\gamma\) variables are correct. Furthermore, let \(\frac{1}{C_m} \leq \frac{\beta_{t,i,j}^*}{\beta_{t,i,j}} \leq C_m\) for some constant \(C_m\). Then, \(\gamma_{t,i}^* \leq (1 + o(1))\gamma_{t,i}^*\).

Proof. As in the proof of Lemma 8, let’s look at the KKT conditions for \(\gamma_{t,i}^*\) into a part corresponding to lone words \(L_i\) and non-lone words. Multiplying \(B.1\) by \(\gamma_{t,i}^*\) as before,

\[
\gamma_{t,i}^* = \sum_{j \in L_i} \tilde{f}_{d,j} + \gamma_{t,i}^* \sum_{j \notin L_i} \frac{\tilde{f}_{d,j}}{f_{d,j}} \beta_{t,i,j}^*.
\]

Again, let \(\tilde{\alpha} = \sum_{j \in L_i} \beta_{t,i,j}^*\).

By Lemma 8, certainly \(\gamma_{t,i}^* \geq \frac{1}{C_m} \gamma_{t,i}^*\). Hence, \(\tilde{f}_{d,j} + \gamma_{t,i}^* \sum_{j \notin L_i} \frac{\tilde{f}_{d,j}}{f_{d,j}} \beta_{t,i,j}^* \leq (1 + \epsilon)C_m^2\).

So we have, \(\gamma_{t,i}^* \leq (1 + \epsilon)(\tilde{\alpha}\gamma_{t,i}^* + C_m^2(1 - \tilde{\alpha})\gamma_{t,i}^*)\).

In other words, this implies \(\frac{\gamma_{t,i}^*}{1 - (1 + \epsilon)\tilde{\alpha}} \leq \frac{1}{1 - (1 + \epsilon)C_m^2(1 - \tilde{\alpha})}\gamma_{t,i}^*\).

Since \(\tilde{\alpha} = 1 - o(1)\), it’s easy to check that \(\frac{\gamma_{t,i}^*}{1 - (1 + \epsilon)C_m^2(1 - \tilde{\alpha})} \leq 1 + o(1)\), which is enough for what we need.

So, as a corollary, we finally get:

Corollary 12. For some \(t_0 = O(\log(\max_{i,j} \frac{1}{\beta_{t,i,j}})) = O(\log N)\), it will be the case that for all \(t \geq t_0\):

\[
\frac{1}{C_{\beta}^*} \leq \frac{\beta_{t,i,j}^*}{\beta_{t,i,j}} \leq C_{\beta}^0
\]

for some constant \(C_{\beta}^0\).

This concludes Phase I of the analysis.

B.1.5 Phase II: Alternating minimization - upper and lower bound evolution

Taking Corollary 12 into consideration, we finally show that, if the \(\beta\) and \(\gamma\) values are correct up to a constant multiplicative factor, and we have the correct support, we can improve the multiplicative error in each iteration, thus achieving convergence to the correct values.

This portion bears resemblance to techniques like state evolution and density evolution in the literature for iterative methods for decoding error correcting codes. In those techniques, one keeps track of a certain quantity of the system that’s evolving in each iteration. In density evolution, this is the probability density function of the messages that are being passed, in state evolution, it is a certain average and variance of the variables we are estimating.

In our case, we keep track of the ”multiplicative accuracy” of our estimates \(\gamma_{t,i}^*, \beta_{t,i,j}^*\). In particular, we will keep track of quantities \(C_{\gamma}^f\) and \(C_{\beta}^f\), such that at iteration \(t\), \(\frac{1}{C_{\beta}^f} \leq \frac{\beta_{t,i,j}^*}{\beta_{t,i,j}} \leq C_{\beta}^f\) and \(\frac{1}{C_{\gamma}^f} \leq \frac{\gamma_{t,i}^*}{\gamma_{t,i}} \leq C_{\gamma}^f\) after the corresponding \(\gamma\) iteration.
We will show that improvement in the quantities \(C^t_\beta\) causes a large enough improvement in the \(C^t_\gamma\) updates, so that after an alternating step of \(\beta\) and \(\gamma\) updates, \(C^{t+1}_\beta \leq (C^t_\beta)^{1/2}\).

First, we show that when the \(\beta\) variables are estimated up to a constant multiplicative factor, the constant for the \(\gamma\) values after they’ve been iterated to convergence is slightly better than the constant for the \(\beta\) values. More precisely:

Lemma 13. Let’s assume that our current iterates \(\gamma_{i,j}^t\) satisfy \(\frac{1}{C^t_\beta} \leq \frac{\beta_{i,j}}{\beta_{i,j}^*} \leq C^t_\beta\) for \(C^t_\beta \geq \frac{1}{(1-\epsilon)^3}\). Then, after iterating the \(\gamma\) updates to convergence, we will get values \(\gamma_{d,i}^t\) that satisfy \((C^t_\beta)^{1/3} \leq \frac{\gamma_{d,i}^*}{\gamma_{d,i}^t} \leq (C^t_\beta)^{1/3}\).

Proof. As usual, we will split the KKT conditions for \(\gamma_{t,i}^k\) into two parts: one for the lone, and one for the non-lone words. Let’s call the set of lone words \(L_i\), as previously. Then, we have

\[
\gamma_{d,i}^t = \sum_{j \notin L_i} f_{d,j} + \gamma_{d,i}^t \sum_{j \notin L_i} \frac{f_{d,j}}{f_{d,j}} \beta_{i,j}^t
\]

Again, let \(\widehat{\alpha} = \sum_{j \in L_i} \beta_{i,j}^* = o(1)\), as we proved before.

Let’s denote as \(C_{\gamma}^t = \text{max}_i(\text{max}(\frac{\gamma_{d,i}^*}{\gamma_{d,i}^t}, \frac{\gamma_{d,i}^*}{\gamma_{d,i}^t}))\).

We claim that is has to hold that \(C_{\gamma}^t \leq (C^t_\beta)^{1/3}\). Assume the contrary, and let \(i_0 = \operatorname{argmax}_i(\max(\frac{\gamma_{d,i}^*}{\gamma_{d,i}^t}, \frac{\gamma_{d,i}^*}{\gamma_{d,i}^t}))\).

Let’s first assume that \(\frac{\gamma_{d,i_0}^*}{\gamma_{d,i_0}^t} = C_{\gamma}^t\).

By the definition of \(C_{\gamma}^t\),

\[
\gamma_{d,i_0}^t = \sum_{j \notin L_{i_0}} f_{d,j} + \gamma_{d,i_0}^t \sum_{j \notin L_{i_0}} \frac{f_{d,j}}{f_{d,j}} \beta_{i_0,j}^t \leq (1 + \epsilon)(\widehat{\alpha}\gamma_{d,i_0}^* + (1 - \widehat{\alpha})(C^t_\beta)^2(C_{\gamma}^t)^2\gamma_{d,i_0}^*)
\]

which will be a contradiction to the definition of \(C_{\gamma}^t\).

After a little rewriting, \(B.2\) translates to \(\widehat{\alpha} \geq 1 - \frac{(C^t_\beta)^{1/3}}{(C^t_\beta)^{1/3} + 1}\). By our assumption on \(C^t_\beta\), \(C^t_\beta \leq C_{\gamma}^3\), so the right hand side above is upper bounded by \(1 - \frac{(C^t_\beta)^{1/3}}{(C^t_\beta)^{1/3} + 1}\). But, Lemma 11 implies that certainly \(C^t_\gamma \leq C^0_\gamma\), where \(C^0_\gamma\) is some absolute constant. The function

\[
f(\epsilon) = \frac{\epsilon^{1/3}}{1 + \epsilon} - \frac{1}{\epsilon^3} - 1
\]

can be easily seen to be monotonically decreasing on the interval of interest, and hence is lower bounded by \(\frac{(C^t_\beta)^{1/3}}{(C^t_\beta)^{1/3} + 1}\), which is in terms some absolute constant smaller than one. Since \(\widehat{\alpha} = 1 - o(1)\), the claim we want is clearly true.

The case where \(\frac{\gamma_{d,i_0}^*}{\gamma_{d,i_0}^t} = C_{\gamma}^t\) is similar. In this case,

\[
\gamma_{d,i_0}^t = \sum_{j \in L_{i_0}} f_{d,j} + \gamma_{d,i_0}^t \sum_{j \in L_{i_0}} \frac{f_{d,j}}{f_{d,j}} \beta_{i_0,j}^t \geq (1 - \epsilon)(\widehat{\alpha}\gamma_{d,i_0}^* + (1 - \widehat{\alpha})(C^t_\beta)^2(C_{\gamma}^t)^2\gamma_{d,i_0}^*)
\]

We then claim that

\[
(1 - \epsilon)(\widehat{\alpha} + (1 - \widehat{\alpha})\frac{1}{(C^t_\beta)^2(C_{\gamma}^t)^2}) \geq \frac{1}{(C_{\gamma}^t)^{1/3}}
\]

Again, \(B.3\) rewrites to:

\[
\widehat{\alpha} \geq \frac{(1 - \epsilon)(C^0_\gamma)^{1/3} - (C^t_\beta)^{1/3}}{1 - \frac{1}{(C^t_\beta)^2(C^0_\gamma)^2}} = 1 - \frac{1 - (1 - \epsilon)(C^0_\gamma)^{1/3}}{1 - \frac{1}{(C^t_\beta)^2}}
\]
Again, the right hand side above is upper bounded by \(1 - \frac{1 - \frac{(1 - \epsilon)(1)}{\beta}}{1 - \frac{(1 - \epsilon)\gamma}{\beta}} \). But \(C_\gamma \in [1, C_\beta^0] \), and the function \(\frac{1 - \frac{(1 - \epsilon)(\gamma)}{\beta}}{1 - \frac{(1 - \epsilon)}{\beta}} \) is monotonically increasing, so lower bounded by

\[
1 - \frac{1 - \frac{(1 - \epsilon)(\gamma)}{\beta}}{1 - \frac{(1 - \epsilon)}{\beta}} = \frac{1 - (1 - \epsilon)^{4/3}}{1 - (1 - \epsilon)^{56}} \geq \frac{1}{42}
\]

Hence, \(1 - \frac{1 - \frac{(1 - \epsilon)(\gamma)}{\beta}}{1 - \frac{(1 - \epsilon)}{\beta}} \) is upper bounded by \(\frac{41}{42} \). Again, our bound on \(\alpha \) gives us what we want.

\[\square\]

Lemma 14. Let’s assume that our current iterates \(\beta_{t,i,j}^t \), \(\gamma_{t,d,i}^t \) satisfy \(\frac{1}{C_\beta} \leq \frac{\beta_{t,i,j}^t}{\beta_{t-1,i,j}^t} \leq C_\beta^t \), \(C_\beta^{t} \geq (C_\gamma^{t})^{3} \). Then, after one \(\beta \) step, we will get new values \(\beta_{t+1,i,j}^{t+1} \) that satisfy \(\frac{1}{C_\beta^{t+1}} \leq \frac{\beta_{t+1,i,j}^{t+1}}{\beta_{t,i,j}^{t}} \leq C_\beta^{t+1} \) where \(C_\beta^{t+1} = (C_\beta^{t})^{1/2} \).

Proof. The proof proceeds in complete analogy with Lemmas 9 and 10.

Again, let’s tackle the lower and upper bound separately. The upper bound condition is:

\[
\alpha > \frac{(C_\beta^{t} C_\gamma^{t})^{2} - \frac{(C_\gamma^{t})^{1/2}}{(C_\beta^{t} C_\gamma^{t})}}{(C_\gamma^{t} C_\beta^{t})^{2} - 1}
\]

Again, using the relationship between \(C_\gamma^{t} \) and \(C_\beta^{t} \), we can upper bound the expression on the right by

\[
1 - \frac{(C_\beta^{t})^{1/6}}{1 - \frac{1}{(1 - \epsilon)^{3/2}}} - 1
\]

Again, the the function \(f(c) = \frac{1}{c^{1/6} - \frac{1}{c^{1/2}}} \) is monotonically decreasing on the interval \([1, C_\beta^{t}]\) of interest, so because \(\alpha = 1 - o(1) \), we get what we want.

Similarly, for the lower bound, we want that

\[
\alpha > \frac{\frac{C_\beta^{t}}{(C_\beta^{t})^{1/2}(1 - \epsilon)} - \frac{1}{(C_\beta^{t} C_\gamma^{t})^{2}}}{1 - \frac{1}{(1 - \epsilon)^{3/2}} - 1}
\]

Yet again, pluggin in the relationship between \(C_\gamma \) and \(C_\beta \), we get that the right hand side is upper bounded by

\[
1 - \frac{1 - \frac{1}{(1 - \epsilon)(\gamma)}}{1 - \frac{1}{(1 - \epsilon)}}
\]

However, again, the function \(f(c) = \frac{1}{c^{1/6} - \frac{1}{c^{1/2}}} \) is monotonically increasing on the interval \([1, C_\beta^{t}]\), so lower bounded by

\[
1 - \frac{1}{(1 - \epsilon)(\gamma)}^{1/6} \geq \frac{1}{126}
\]

Hence, \(1 - \frac{1}{(1 - \epsilon)(\gamma)}^{1/6} \) is upper bounded by \(\frac{125}{126} \), so using the fact that \(\alpha = 1 - o(1) \), we get what we want.

\[\square\]

Putting lemmas 13 and 14 together, we get:
Lemma 15. Suppose it holds that \(\frac{1}{C_t} \leq \frac{\beta_{t,i}^*}{\beta_{t,i,j}} \leq C_t' \), \(C_t' \geq \frac{1}{(1-\epsilon)^2} \). Then, after one KL minimization step with respect to the \(\gamma \) variables and one \(\beta \) iteration, we get new values \(\beta_{t+1,i,j}^* \) that satisfy \(\frac{1}{C_{t+1}} \leq \frac{\beta_{t+1,i}^*}{\beta_{t+1,i,j}} \leq C_{t+1}' \), where \(C_{t+1}' = \sqrt{C_t'} \).

Proof. By Lemma 13, after the \(\gamma \) iterations, we get \(\gamma_{t,d,i}^* \) values that satisfy the condition \(\frac{1}{C_t'} \leq \frac{\gamma_{t,d,i}^*}{\gamma_{t,d,i}} \leq (C_t')', \) where \((C_t')' = (C_t')^{1/3} \).

Then, by Lemma 14, after the \(\gamma \) iteration, we will get \(\frac{1}{C_{t+1}} \leq \frac{\beta_{t+1,i}^*}{\beta_{t+1,i,j}} \leq C_{t+1}' \), such that \(C_{t+1}' = (C_t')^{1/2} \), which is what we need.

Hence, as a corollary, we get immediately:

Corollary 16. Lemma 15 above implies that Phase III requires \(O(\log(\frac{1}{\log(1+\epsilon)})) = O(\log(\frac{1}{\epsilon})) \) iterations to estimate each of the topic-word matrix and document proportion entries to within a multiplicative factor of \(\frac{1}{(1-\epsilon)^2} \).

This finished the proof of Theorem 1 for the KL-tEM version of the updates. In the next section, we will remark on why the proofs are almost identical in the iterative and incomplete tEM version of the updates.

B.2 Iterative tEM updates, incomplete tEM updates

We show how to modify the proofs to show that the iterative tEM and incomplete tEM updates work as well. We'll just sketch the arguments as they are almost identical as above.

In those updates, when we are performing a \(\gamma \) update, we initialize with \(\gamma_{t,d,i}^* = 0 \) whenever topic \(i \) does not belong to document \(d \), and \(\gamma_{t,d,i}^* \) uniform among all the other topics.

Then, the way to modify Lemmas 8, 11, 13 is simple. Instead of arguing by contradiction about what happens at the KKT conditions, one will assume that at iteration \(t' \) (\(t' \) to indicate these are the separate iterations for the \(\gamma \) variables that converge to the values \(\gamma_{t,d,i}^* \)) it holds that \(\frac{1}{C_{t'}} \gamma_{t,d,i}^* \leq \gamma_{t,d,i} \leq C_{t'} \gamma_{t,d,i}^* \). Then, as long as \(C_{t'} \) is too big, compared to \(C_{t'} \), one can show that \(C_{t'} \) is decreasing (to \(C_{t'}^{t+1} = (C_{t'}^t)^{1/2} \), say), using exactly the same argument we had before. Furthermore, the number of such iterations needed will clearly be logarithmic.

But the same argument as above proves the incomplete tEM updates work as well. Namely, even if we perform only one update of the \(\gamma \) variables, they are guaranteed to improve.

B.3 Initialization

For completeness, we also give here a fairly easy, efficient initialization algorithm. Recall, the goal of this phase is to recover the supports - i.e. to find out which topics are present in a document, and identify the support of each topic.

We will find the topic supports first. Roughly speaking, we will devise a test, which will take as input two documents \(d, d' \), and will try to determine if the two documents have a topic in common or not. The test will have no false positives, i.e. will never say NO, if the documents do have a topic in common, but might say NO even if they do. We will then, ensure that with high probability, for each topic we find a pair of documents intersecting in that topic, such that the test says YES.

We will also be able to identify which pairs intersect in exactly one topic, and from this we will be able to find all the topic supports. Having done all of this, finding the topics in each document will be easy as well. Roughly speaking, if a document doesn’t contain a given topic, it will not contain all of the discriminative words in that document.

We give the algorithm formally as pseudocode Algorithm 2.

Now, let’s proceed to analyze the above algorithm, proceeding in a few parts.
Algorithm 2 Initialization

\[\text{repeat } K^4 \log^2 K \text{ times} \]

Sample a pair of documents \((d, d')\).

\[\triangledown \text{Test if } (d, d') \text{ intersect with no false positives:} \]

if \(\sum_j \min\{f_{d,j}^*, f_{d',j}^*\} \geq \frac{1}{2T} \) then

\[S_{d,d'} := \{ j, \text{s.t. } f_{d,j}^*, f_{d',j}^* > 0 \} \]

\(\triangledown \) "Weed-out" words that are not in the support of the intersection of \((d, d')\)

for all documents \(d'' \neq \{d, d'\} \) do

if \(\sum_j \min\{f_{d,j}^*, f_{d'',j}^*\} \geq \frac{1}{2T} \) and \(\sum_j \min\{f_{d',j}^*, f_{d'',j}^*\} \geq \frac{1}{2T} \) then

\[S_{d,d'} = S_{d,d'} \cap \{ j, \text{s.t. } f_{d'',j}^* > 0 \} \]

end if

end for

end if

until

\(\triangledown \) Determine which \(S_{a,b} \) correspond to documents intersecting in one topic only

if Set \(S_{a,b} \) appears less than \(D/K^{2.5} \) times, where \(D \) is the total number of documents then

Remove \(S_{a,b} \).

end if

if Set \(S_{a,b} \) can be written as the union of two other sets \(S_{c,d}, S_{e,f} \), where neither is contained inside the other then

Remove \(S_{a,b} \).

end if

if Set \(S_{a,b} \) is strictly contained inside \(S_{d,d'} \) for some \(S_{d,d'} \) then

Remove \(S_{d,d'} \).

end if

Remove duplicates.

The remaining lists \(S_{a,b} \) are declared to be topic supports.
B.3.1 Constructing a no-false-positives test

First, we describe how one determines the supports of the topics. Let’s define \(Test(d, d') = \text{YES} \), if \(\sum_j \min\{f_{d,j}, f_{d',j}\} \geq \frac{1}{2T} \), and \(\text{NO} \) otherwise. Then, we claim the following.

Lemma 17. If \(d, d' \) both contain a topic \(i_0 \), s.t. \(\gamma_{d,i_0}^* \geq 1/T, \gamma_{d',i_0}^* \geq 1/T \) then \(Test(d, d') = \text{YES} \). If \(d, d' \) do not contain a topic \(i_0 \) in common, then \(Test(d, d') = \text{NO} \).

Proof. Let’s prove the first claim.

\[
\sum_j \min\{\tilde{f}_{d,j}, \tilde{f}_{d',j}\} \geq \sum_j (1 - \epsilon) \min\{\beta_{i_0,j}^*, \gamma_{d,i_0}^*, \beta_{i_0,j}^*, \gamma_{d',i_0}^*\} \geq \sum_j (1 - \epsilon) 1/T \beta_{i,j}^* i_0, j \geq 1/2T
\]

Now, let’s prove the second claim. Let’s suppose \(d, d' \) contain no topic in common. Let’s fix a topic \(i_0 \) that belongs to document \(d \). By the ”small discriminative words intersection”, we have the following property:

\[
\sum_{j \in T_{\text{outside}}} \beta_{i,j}^* = o(1)
\]

for any other topic \(i' \neq i_0 \).

Denoting by \(T_{\text{outside}} \) the words belonging to topic \(i_0 \), and no topic in document \(d' \), and \(T_{\text{inside}} \) the words belonging to at least one other topic in \(d' \), we have

\[
\sum_{j \in T_{\text{inside}}} \beta_{i,j}^* \leq T \cdot o(1) = o(1)
\]

For the words \(j \in T_{\text{outside}} \), \(\min\{f_{d,j}^*, f_{d',j}^*\} = 0 \). By the above,

\[
\sum_j \min\{\tilde{f}_{d,j}, \tilde{f}_{d',j}\} \leq (1 + \epsilon) T^2 o(1) = o(1)
\]

Thus, the test will say NO, as we wanted.

\[\square\]

B.3.2 Finding the topic supports from identifying pairs

Let’s call \(d, d' \) an identifying pair of documents for topic \(i \), if \(d, d' \) intersect in topic \(i \) only, and furthermore the test says YES on that pair.

From this identifying pair, we show how to find the support of the topic \(i \) in the intersection. What we’d like to do is just declare the words \(j \), s.t. \(f_{d,j}^*, f_{d',j}^* \) are both non-zero as the support of topic \(i \). Unfortunately, this doesn’t quite work. The reason is that one might find words \(j \), s.t. they belong to one topic \(i' \) in \(d \), and another topic \(i'' \) in \(d'' \). Fortunately, this is easy to remedy. As per the pseudo-code above, let’s call the following operation \(\text{WEEDOUT}(d, d') \):

- Set \(S = \{ j, s.t. f_{d,j}^* > 0, f_{d',j}^* > 0 \} \).
- For all \(d'' \), s.t. \(Test(d, d'') = \text{YES}, Test(d', d'') = \text{YES} \):
 - Set \(S = S \cup \{ j, s.t. f_{d'',j}^* > 0 \} \)
- Return \(S \).

Lemma 18. With high probability, for any pair of documents \(d, d' \) intersecting in one topic, \(\text{WEEDOUT}(d, d') \) is the support of \(S \).
Proof. For this, we prove two things. First, it’s clear that S is initialized in the first line in a way that ensures that it contains all words in the support of topic i. Furthermore, it’s clear that at no point in time we will remove a word j from S that is in the support of topic i. Indeed - if $Test(d,d') = YES$ and $Test(d,d'') = YES$, then by Lemma 17 document d'' must contain topic i. In this case, $f_{d',j} > 0$, and we won’t exclude j from S.

So, we only need to show that the words that are not in the support of topic i get ”weeded out”.

Let d, d' intersect in a topic i. Let a word j be outside the support of a given topic i. Because of the independent topic inclusion property, the probability that a document d'' contains topic i, and no other topic containing j is $\Omega(1/K)$.

Since the number of documents is $\Omega(K^4 \log^2 K)$, by Chernoff, the probability that there is a document d'', s.t. $Test(d,d'') = YES, Test(d',d'') = YES$, but $f_{d'',j} = 0$, is $1 - \Omega(\frac{1}{c^{K^2 - 2\log K}})$. Union bounding over all words j, as well as pairs of documents d,d', we get that for any documents d,d' intersection in a topic i, with high probability, we will weedout all words j not in the support of S, as we need.

\[\square \]

B.3.3 Finding the identifying pairs

Finally, we show how to actually find the identifying pairs. The main issue we need to handle are documents that do intersect, and the TEST returns yes, but they intersect in more than one topic. There’s two ingredients to ensuring this is true in the above algorithm.

- First, we delete all sets in the list of sets $S_{a,b}$ that show up less than $D^2/K^{2.5}$ number of times.
- Second, we remove sets that can be written as the union of two other sets $S_{c,d}, S_{c,f}$, where neither of the two is contained inside the other.
- After this, we delete the non-maximal sets in the list.

The following lemma holds:

Lemma 19. Each topic i_0 has $\Omega(D^2/K^2)$ identifying pairs with high probability.

Proof. Let $\mathcal{I}_{d,d'}$ be an indicator variable denoting the event that (d,d') is an identifying pair for topic i_0.

The probability that a document d has topic i_0 as a dominating topic is $\Theta(1/K)$. For any other document d', the probability that it has i_0 as a dominating topic as well is $\Theta(1/K)$, and furthermore, conditioned on i_0 being the dominating topic, the probability that d' contains one more of the topics in d is $o(1)$, by the independent topic inclusion property. Hence, $Pr[\mathcal{I}_{d,d'} = 1] = \Theta(1/K^2)$.

The events $\mathcal{I}_{d,d'}$ are pairwise independent, so $\text{Var}[\mathcal{I}_{d,d'}] = \Theta(1/K^2)$. By Chebyshev’s inequality, if the total number of documents is D, and D_{i_0} is the number of identifying pairs for topic i_0,

$$Pr[D_{i_0} \geq \Theta(D/K^2) - c\Theta(\sqrt{D/K})] \geq 1 - \frac{1}{c^2}$$

Since $D = \Omega(K^3 \log^2 K)$, if we plug in $c = K$, we get that

$$Pr[D_{i_0} \geq \Omega(D/K^2)] \geq 1 - \Omega(\frac{1}{K^3})$$

Union bounding over all topics, we get that with probability $1 - \frac{1}{K}$, all topics have $\Omega(D^2/K^2)$ identifying pairs.

\[\square \]

The lemma implies that with high probability, we will not eliminate the sets $S_{a,b}$ corresponding to topic supports.

We introduce the following concept of a "configuration". A set of words C will be called a "configuration" if it can be constructed as the intersection of the discriminative words in some set of topics, i.e.
Definition. A set of words \(C \) is called a configuration if there exists a set \(I = \{I_1, \ldots, I_{|I|}\} \) of topics, s.t.

\[
C = \bigcap_{i=1}^{|I|} W_{I_i}
\]

Let’s call the minimal size of a set \(I \) that can produce \(C \) the generator size of \(C \).

Now, we claim the following fact:

Lemma 20. If a configuration \(C \) has generator size \(\geq 3 \), then with high probability, it cannot appear as one of the sets \(S_{a,b} \) after step 2 in the WEEDOUT procedure.

Proof. Since \(C \) has generator size at least 3, if two sets \(d, d' \) intersect in less than two topics, then step 1 in WEEDOUT cannot produce \(S_{a,b} \) which is equal to \(C \). Hence, prior to step 2, \(C \) can only appear as \(S_{d,d'} \) for \(d, d' \) that intersect in at least 3 topics.

Let \(\mathcal{I}_{d,d'} \) be an indicator variable denoting the fact that the pair of documents \(d, d' \) intersects in at least 3 topics. We have \(\Pr[\mathcal{I}_{d,d'} = 1] \leq 1/K^3 + 1/K^4 + \ldots 1/K^T = O(1/K^3) \) by the independent topic inclusion property.

If \(\mathcal{I}_3 \) is a variable denoting the total number of documents that intersect in at least 3 topics, again by Chebyshev as in Lemma 19 we get:

\[
\Pr[\mathcal{I}_3 \geq \Theta(D/K^3) - c\Theta(\sqrt{D/K^3})] \geq 1 - \frac{1}{c^2}
\]

Again, by putting \(c = \sqrt{K} \), since the number of documents is \(K^4 \log^2 K \), with probability \(1 - \frac{1}{K} \), all configurations with generator size \(\geq 3 \) cannot appear as one of the sets \(S_{a,b} \), as we wanted.

This means that after the WEEDOUT step, with high probability, we will just have sets \(S_{a,b} \) corresponding to configurations generated by two topics or less. The options for these are severely limited: they have to be either a topic support, the union of two topic supports, or the intersection of two topic supports. We can handle this case fairly easily, as proven in the following lemma:

Lemma 21. After the end of step 3, with high probability, the only remaining \(S_{a,b} \) are those corresponding to topic supports.

Proof. First, when we check if some \(S_{d,d'} \) is the union of two other sets and delete it if yes, I claim we will delete the sets equal to configurations that correspond to unions of two topic supports (and nothing else). This is not that difficult to see: certainly the sets that do correspond to configurations of this type will get deleted.

On the other hand, if it’s the case that \(S_{a,b} \) corresponds to a single topic support, we won’t be able to write it as the union of two sets \(S_{d,d'}, S_{d'',d'''} \), unless one is contained inside the other - this is ensured by the existence of discriminative words.

Hence, after the first two passes, we will only be left with sets that are either topic supports, or intersections of two topic supports. Then, removing the non-maximal is easily seen to remove the sets that are intersections, again due to the existence of discriminative words.

B.3.4 Finding the document supports

Now, given the supports of each topic, for each document, we want to determine the topics which are non-zero in it. The algorithm is given in 3:

Lemma 22. If a topic \(i_0 \) is such that \(\gamma_{d,i_0} > 0 \), it will be declared as "IN". If a topic \(i_0 \) is such that \(\gamma_{d,i_0} = 0 \), it will be declared as out.

Proof. Consider a topic \(i \). At any instant of time, let’s look at \(\sum_{j \in \text{Support}(i) \setminus R} \tilde{f}_{d,j} \). Clearly, \(\tilde{f}_{d,j} \geq (1 - \epsilon) \gamma_{d,i} \beta_{i,j} \). Also \(\sum_{j \in R} \beta_{i,j} = T_o(1) \). Hence,

\[
\sum_{j \in \text{Support}(i) \setminus R} \tilde{f}_{d,j} \geq (1 - \epsilon) \gamma_{d,i} (1 - T_o(1)) \geq \frac{1}{2} \gamma_{d,i}
\]
Algorithm 3 Finding document supports

Initialize $R = \emptyset$.

for each i do
 Compute $\text{Score}(i) = \sum_{j \in \text{Support}(i) \setminus R} \hat{f}_{d,j}$
end for

Find i^* such that $\text{Score}(i^*)$ is maximum.

while $\text{Score}(i^*) > 0$ do
 Output i^* to be in the support of d.
 $R = R \cup \text{support}(i^*)$
 Recompute Score for every other topic.
 Find i^* with maximum score.
end while

So, topic i will be added eventually.

On the other hand, let’s assume the document doesn’t contain a given topic i_0. Let’s call B the set of words j which are in the support of i_0, and belong to at least one of the topics in document d. Then, $\sum_{j \in i_0} \hat{f}_{d,j} = \sum_{j \in B} \hat{f}_{d,j}$. Let i^* be the topic which is present in the document but not added yet and has maximum value of γ_{d,i^*}. Then

$$\sum_{j \in B} \hat{f}_{d,j} \leq (1 + \epsilon) \sum_{i \in d} \sum_{j \in B} \gamma_{d,i} \beta_{i,j} \leq$$

$$(1 + \epsilon) \gamma_{d,i^*} \sum_{i \in d} \sum_{j \in B} \beta_{i,j} \leq$$

$$\gamma_{d,i^*} T \gamma_{d,i^*} o(1) \leq \gamma_{d,i^*} o(1)$$

Hence, topic i^* will always get preference over i_0. Once, all the topics which are present in the document have been added, it is clear that no more topic will be added since score will be 0.

\[\square\]

C Case study 2: Dominating topics, seeded initialization

As a reminder, seeded initialization does the following:

- For each topic i, the user supplies a document d, in which $\gamma_{d,i} \geq C_l$.
- We initialize with $\beta_{i,j}^0 = f_{d,j}^*$.

The theorem we want to show is:

Theorem 23. Given an instance of topic modelling satisfying the Cast study 2 properties specified above, where the number of documents is $\Omega\left(\frac{K \log^2 N}{\epsilon^2}\right)$, if we initialize with seeded initialization, after $O(\log(1/\epsilon))$ of KL-tEM updates, we recover the topic-word matrix and topic proportions to multiplicative accuracy $1 + \epsilon$.

The proof will be in a few phases again:

- **Phase I: Anchor identification:** First, we will show that as long as we can identify the dominating topic in each of the documents, the anchor words will make progress, in the sense that after $\approx \log n$ number of rounds, the values for the topic-word estimates will be almost zero for the topics for which word w is not an anchor, and lower bounded for the one for which it is.

- **Phase II: Discriminative word identification:** Next, we show that as long as we can identify the dominating topics in each of the documents, and the anchor words were properly identified in the previous phase, the values of the topic-word matrix for words which do not belong to a certain topic will keep dropping until they reach almost zero, while being lower bounded for the words that do.
• For Phase I and II above, we will need to show that the dominating topic can be identified at any step. Here we’ll leverage the fact that the dominating topic is sufficiently large, as well as the fact that the anchor words have quite a large weight.

• **Phase III: Alternating minimization**: Finally, we show that after Phase I and II above, we are back to the scenario of the previous section: namely, there is a ”boosting” type of improvement in each next round.

There are many tradeoffs between the dynamic range of the discriminative words, the proportion of anchor words, and the size of the dominating topic. These are somewhat difficult to keep track off, so we’ll discuss some reasonable settings for them in a separate section. However, to be formal, we state the assumptions in full:

• **Large fraction of anchors**: Each topic \(i \) has anchor words, such that their total weight is at least \(p \).

• **Small dynamic range**: For each discriminative words, if \(\beta_{i,j}^* \neq 0 \) and \(\beta_{v,j}^* \neq 0 \), \(\beta_{i,j}^* \leq B \beta_{v,j}^* \).

• **Small fraction of 1 − \(\delta \) dominant documents**: Among all the documents where topic \(i \) is dominating, in a \(8/B \) fraction of them, \(\gamma_{d,i}^* \geq 1 - \delta \), where

\[
\delta := \min \left(\frac{C_i^2}{2B^2}, \frac{2}{p} \sqrt{\frac{1}{2} \left(\log \left(\frac{1}{C_i} \right) + (1 - p) \log B \right)} \right) \left(1 - \sqrt{C_i} \right)
\]

• **Sparse documents**: The documents are sparse: each document has at most \(T = O(1) \) topics.

• **Gapped documents**: In each document, the largest topic has proportion at least \(C_i \), and all the other topics are at most \(C_s \), s.t.

\[
C_i - C_s \geq \frac{2}{p} \sqrt{\frac{1}{2} \left(\log \left(\frac{1}{C_i} \right) + (1 - p) \log B \right)}
\]

C.1 Estimates on the dominating topic

Before diving into the specifics of the phases above, we will show what the conditions we need are to be able to identify the dominating topic in each of the documents.

First of all, during a \(\gamma \) update, we are trying to minimize \(KL(\tilde{f}_{d,j} \| f_{d,j}) \) with respect to the \(\gamma \) variables, so we need some way or arguing that whenever the \(\beta \) estimates are not too bad, minimizing this quantity says something about how far the \(\gamma \) variables are from \(\gamma^* \).

Formally, what we’ll show is the following:

Lemma 24. If, for all \(i \), \(KL(\beta_i^* \| \beta_i^\dagger) \leq R_\beta \), and \(\min_{\gamma_d} KL(\tilde{f}_{d,j} \| f_{d,j}) \leq R_f \), after running a KL divergence minimization step with respect to the \(\gamma_d \) variables, we get that \(||\gamma_d^* - \gamma_d||_1 \leq \frac{1}{1 - \epsilon} \left(\sqrt{\frac{1}{2}R_\beta} + \sqrt{\frac{1}{2}R_f} \right) \).

We will start with the following simple helper claim:

Lemma 25. If the word-topic matrix \(\beta \) has anchor words with probability \(p \), then \(||\beta^*v||_1 \geq p||v||_1 \).

Proof.

\[
||\beta^*v||_1 = \sum_i |\sum_j \beta_{i,j}^* v_i| \geq \sum_i \sum_{j \in W_i} |\beta_{i,j}^* v_i| \geq \sum_i p|v_i| \geq p||v||_1
\]

Lemma 26. If, for all \(i \), \(KL(\beta_i^* \| \beta_i^\dagger) \leq R_\beta \), and \(\min_{\gamma_d} KL(\tilde{f}_{d,j} \| f_{d,j}) \leq R_f \), after running a KL divergence minimization step with respect to the \(\gamma_d \) variables, we get that \(||\gamma_d^* - \gamma_d||_1 \leq \frac{1}{1 - \epsilon} \left(\sqrt{\frac{1}{2}R_\beta} + \sqrt{\frac{1}{2}R_f} \right) \).
Proof. First, observe that \(\text{min}_d KL(\tilde{f}_d||f_d) \leq R_f \), at the the optimal \(\gamma_d \), we have that \(||\tilde{f}_d - f_d||_1^2 \leq \frac{1}{2}R_f \), i.e. \(||\tilde{f}_d - f_d|| \leq \sqrt{\frac{1}{2}R_f} \), by Pinsker’s inequality.

We will show that if \(||\gamma^* - \gamma_d||_1 \) is large, so must be \(||\tilde{f}_d - f_d||_1 \), and hence \(KL(\tilde{f}_d||f_d) \) - which will contradict the above upper bound.

Let’s consider \(\beta^* \) as \(N \) by \(K \) matrix, and \(\gamma^* \) and \(f^* \) as \(K \)-dimensional vectors. Let \(\beta^*\gamma^* \) just denote matrix-vector multiplication - so \(f^* = \beta^*\gamma^* \). For any other vector \(\tilde{\gamma} \), let’s denote \(\tilde{f} = \beta^t\tilde{\gamma} \). Then:

\[
||\tilde{f} - f||_1 = ||\tilde{f} - \beta^t\tilde{\gamma}||_1 = ||\tilde{f} - (\beta^* + (\beta^t - \beta^*))\tilde{\gamma}||_1 \geq (1 - \epsilon)||\beta^* (\gamma^* - \tilde{\gamma})||_1 - ||(\beta^t - \beta^*)\tilde{\gamma}||_1
\]

However,

\[
||(\beta^t - \beta^*)\gamma||_1 \leq \max_j |\beta^t_{i,j} - \beta^*_{i,j}| = \max_i \sqrt{\frac{1}{2}KL(\beta^*||\beta^t_i)} \leq \sqrt{\frac{1}{2}R_{\beta}}
\]

The first inequality is a property of induced matrix norms, the second is via Pinsker’s inequality.

So, by C.1 and C.2, \((1 - \epsilon)||\beta^* (\gamma^* - \tilde{\gamma})||_1 \leq \sqrt{\frac{1}{2}R_{\beta} + \sqrt{\frac{1}{2}R_f}} \). But now, finally, Lemma 25 implies that

\[
||\gamma^*_d - \gamma_d||_1 \leq \frac{1}{1 - \epsilon} \frac{1}{2p}(\sqrt{\frac{1}{2}R_f} + \sqrt{\frac{1}{2}R_{\beta}})
\]

\[\square\]

Lemma 27. Suppose that for the dominating topic \(i \) in a document \(d \), \(\gamma^*_{d,i} \geq C_1 \), and for all other topics \(i' \), \(\gamma^*_{d,i'} \leq C_s \), s.t. \(C_l - C_s > \frac{1}{2}(\sqrt{\frac{1}{2}R_f} + \sqrt{\frac{1}{2}R_{\beta}}) \). Then, the above test identifies the largest topic.

Furthermore, \(\frac{1}{2}\gamma^*_{d,i} \leq \gamma^*_{d,i} \leq \frac{3}{2}\gamma^*_{d,i} \).

Proof. By Lemma 26, and the relationship between \(l_1 \) and total variation distance between distributions, we have that \(|\gamma^*_{d,i} - \gamma^*_{d,i'}| \leq \frac{1}{1 - \epsilon} \frac{1}{2p}(\sqrt{\frac{1}{2}R_f} + \sqrt{\frac{1}{2}R_{\beta}}) \).

For the dominating topic \(i \), \(\gamma^*_{d,i} \geq C_1 - \frac{1}{1 - \epsilon} \frac{1}{2p}(\sqrt{\frac{1}{2}R_f} + \sqrt{\frac{1}{2}R_{\beta}}) \). On the other hand, for any other topic \(i' \), \(\gamma^*_{d,i'} \leq C_s + \frac{1}{1 - \epsilon} \frac{1}{2p}(\sqrt{\frac{1}{2}R_f} + \sqrt{\frac{1}{2}R_{\beta}}) \). Since \(C_l - C_s > \frac{1}{2}(\sqrt{\frac{1}{2}R_f} + \sqrt{\frac{1}{2}R_{\beta}}) \), \(\gamma^*_{d,i} > \gamma^*_{d,i'} \), so the test works.

On the other hand, since \(\gamma^*_{d,i} \geq \gamma^*_{d,i} - \frac{1}{1 - \epsilon} \frac{1}{2p}(\sqrt{\frac{1}{2}R_f} + \sqrt{\frac{1}{2}R_{\beta}}) \geq \gamma^*_{d,i} - \frac{1}{2}\gamma^*_{d,i} = \frac{1}{2}\gamma^*_{d,i} \). Similarly, \(\gamma^*_{d,i} \leq \gamma^*_{d,i} + \frac{1}{1 - \epsilon} \frac{1}{2p}(\sqrt{\frac{1}{2}R_f} + \sqrt{\frac{1}{2}R_{\beta}}) \leq \gamma^*_{d,i} + \frac{1}{2}\gamma^*_{d,i} = \frac{3}{2}\gamma^*_{d,i} \).

\[\square\]

C.2 Phase I: Determining the anchor words

We proceed as outlined. In this section we show that in the first phase of the algorithm, the anchor words will be identified - by this we mean that we will be able to show that if a word \(j \) is an anchor for topic \(i \), \(\beta^*_{i,j} \) will be within a factor of roughly 2 from \(\beta^*_{i,j} \), and \(\beta^*_{i,j} \) will be almost 0 for any other topic \(i' \).

We will assume throughout this and the next section that we can identify what the dominating topic is, and that we have an estimate of the proportion of the dominating topic to within a factor of 2. (We won’t restate this assumption in all the lemmas in favor of readability.)

We will return to this issue after we’ve proven the claims of Phases I and II modulo this claim.

The outline is the following. We show that at any point in time, by virtue of the initialization, \(\beta^*_{i,j} \) is pretty well lower bounded (more precisely it’s at least constant times \(\beta^*_{i,j} \)). This enables us to show that \(\beta^*_{i,j} \) will halve at each iteration - so in some polynomial number of iterations will be basically 0.

C.2.1 Lower bounds on the \(\beta^*_{i,j} \) values

We proceed as outlined above. We show here that the \(\beta^*_{i,j} \) variables are lower bounded at any point in time. More precisely, we show the following lemma:
Lemma 28. Let j be an anchor word for topic i, and let $i' \neq i$. Suppose that $\beta_{i',j}^t \leq \beta_{i,j}^t$. Then, $\beta_{i,j}^{t+1} \geq (1 - \epsilon) C_l \beta_{i,j}^t$ holds.

Proof. We'll prove a lower bound on each of the terms $\frac{f_{d,j}^l}{f_{d,j}^t} \beta_{i,j}^t$. Since the update on the β variables is a convex combination of terms of this type, this will imply a lower bound on $\beta_{i,j}^{t+1}$.

For this, we upper bound $f_{d,j}^t$. We have:

$$f_{d,j}^t = \beta_{i,j}^t \gamma_{d,i}^t + \sum_{i' \neq i} \beta_{i',j}^t \gamma_{d,i'}^t = \beta_{i,j}^t \gamma_{d,i}^t + \sum_{i' \neq i} \beta_{i',j}^t \gamma_{d,i'}^t$$

This means that $f_{d,j}^t$ is a convex combination of terms, each of which is at most $\beta_{i,j}^t$. Hence, $f_{d,j}^t \leq \beta_{i,j}^t$ holds. But then $\frac{f_{d,j}^l}{f_{d,j}^t} \beta_{i,j}^t \geq f_{d,j}^l \geq (1 - \epsilon) \beta_{i,j}^* \gamma_{d,i}^t \geq (1 - \epsilon) C_l \beta_{i,j}^t$.

This implies $\beta_{i,j}^{t+1} \geq (1 - \epsilon) C_l \beta_{i,j}^t$, as we wanted.

C.2.2 Decreasing $\beta_{i',j}$ values

We'll bootstrap to the above result. Namely, we'll prove that whenever $\beta_{i',j}^t \geq 1/C_l \beta_{i,j}^*$, the $\gamma_{d,i}^t$ variables decrease multiplicatively at each round. Prior to doing that, the following lemma is useful.

It will state that whenever the values of the variables $\beta_{i',j}^t$ are somewhat small, we can get some reasonable lower bound on the values $\gamma_{d,i}^t$ we get after a step of KL minimization with respect to the γ variables.

Lemma 29. Let j be an anchor for topic i, and let $i' \neq i$. Let $\beta_{i',j}^t \leq b \beta_{i,j}^*$, then for any document d, when performing KL divergence minimization with respect to the variables $\gamma_{d,i}$, for the optimum value $\gamma_{d,i}^t$, it holds that $\gamma_{d,i}^t \geq (1 - \epsilon) \frac{b}{1 - b} \gamma_{d,i}^* - \frac{b}{1 - b}$.

Proof. The KKT conditions B.1 imply that if we denote A_i the set of anchors in topic i, $\sum_{j \in A_i} \frac{f_{d,j}^t}{f_{d,j}^l} \beta_{i,j}^t \leq 1$. By the assumption of the lemma,

$$f_{d,j}^t \leq b \beta_{i,j}^t \gamma_{d,i}^* \leq b b \beta_{i,j}^*(1 - \gamma_{d,i}^*)$$

Since $\frac{f_{d,j}^l}{f_{d,j}^t} \beta_{i,j}^t \gamma_{d,i}^*$, this implies $\frac{f_{d,j}^l}{f_{d,j}^t} \beta_{i,j}^t \geq (1 - \epsilon) \beta_{i,j}^* \frac{\gamma_{d,i}^*}{\gamma_{d,i}^*(1 - b) + b}$, i.e. $\sum_{j \in A_i} (1 - \epsilon) \beta_{i,j}^* \frac{\gamma_{d,i}^*}{\gamma_{d,i}^*(1 - b) + b} \leq 1$. Rearranging the terms, we get

$$\gamma_{d,i}^t \geq (1 - \epsilon) \sum_{j \in A_i} \beta_{i,j}^* \frac{\gamma_{d,i}^*}{1 - b} - \frac{b}{1 - b} \geq (1 - \epsilon) p \gamma_{d,i}^* - \frac{b}{1 - b}$$

as we needed.

With this in place, we show that the value $\beta_{i',j}^*$ when j is an anchor for topic $i \neq i'$, decreases by a factor of 2 after the update for the β variables.

This requires one more new idea. Intuitively, if we view the update as setting $\beta_{i',j}^{t+1}$ to $\beta_{i,j}^t$ multiplied by a convex combination of terms $\frac{f_{d,j}^l}{f_{d,j}^t}$, a large number of them will be zero, just because $f_{d,j}^t = 0$ unless topic i belongs to document d.

By the topic equidistribution property then, the probability that this happens is only $O(1/K)$, so if the weight in the convex combination on these terms is reasonable, we will multiply $\beta_{i',j}^t$ by something less than 1, which is what we need.

Lemma 29 says that if $\gamma_{d,i}^*$ is reasonably large, we will estimate it somewhat decently. If $\gamma_{d,i}^*$ is small, then $f_{d,j}^t$ would be small anyway.

So we proceed according to this idea.
Lemma 30. Let \(j \) be an anchor for topic \(i \). Let \(\beta_{t+1}^{i,j} \leq \beta_t^{i,j} \) for \(i' \neq i \), and let \(\beta_t^{i,j} \geq 1/C_{\beta} \beta_t^{i,*} \) for some constant \(C_{\beta} \). Then, \(\beta_{t+1}^{i,j} \leq b/2\beta_t^{i,j} \)

Proof. We will split the \(\beta \) update as

\[
\beta_{t+1}^{i,j} = \beta_t^{i,j} \left(\sum_{d \in D_1} \frac{f_{d,j}^t \gamma_{d,i'}}{\sum_d \gamma_{d,i'}} + \sum_{d \in D_2} \frac{f_{d,j}^t \gamma_{d,i'}}{\sum_d \gamma_{d,i'}} + \sum_{d \in D_3} \frac{f_{d,j}^t \gamma_{d,i'}}{\sum_d \gamma_{d,i'}} \right)
\]

for some appropriately chosen partition of the documents into three groups \(D_1, D_2, D_3 \).

Let \(D_1 \) be documents which do not contain topic \(i \) at all, \(D_2 \) documents which do contain topic \(i \), and \(\gamma_{d,i}^* \geq \frac{2\beta}{p} \), and \(D_3 \) documents which do contain topic \(i \) and \(\gamma_{d,i}^* < \frac{2\beta}{p} \).

The first part will just vanish because word \(j \) is an anchor word for topic \(i \), and topic \(i \) does not appear in it, so \(f_{d,j}^t \) is 0 for all documents \(d \in D_1 \).

The second summand we will upper bound as follows. First, we upper bound \(\frac{f_{d,j}^t \gamma_{d,i'}}{\sum_d \gamma_{d,i'}} \). We have that \(f_{d,j}^t \geq \beta_{t,j} \gamma_{d,i'} \geq 1/C_{\beta} \beta_{t,j} \gamma_{d,i'} \). However, we can use Lemma 29 to lower bound \(\gamma_{d,i'}^* \). We have that \(\gamma_{d,i'}^* \geq (1 - \epsilon)(\frac{p}{C_{\gamma} \gamma_{d,i}} - \frac{b}{C_{\gamma} \gamma_{d,i}}) \geq (1 - \epsilon)(\frac{p}{C_{\gamma} \gamma_{d,i}} - \frac{b}{C_{\gamma} \gamma_{d,i}}) \). This altogether implies \(\frac{f_{d,j}^t \gamma_{d,i'}}{\sum_d \gamma_{d,i'}} \leq \frac{1}{1 - \epsilon} \frac{2C_{\beta}}{p} (1 - b) \frac{\beta_t^{i,j}}{\sum_d \gamma_{d,i'}} \).

Furthermore, \(\sum_d \gamma_{d,i'} \geq \frac{1}{2} |D(C_i)| \). On the other hand, I claim \(\sum_{d \in D_2} \gamma_{d,i'}^* = O(K/|D|) \). Recall that \(D \) is the set of documents where topic \(i' \) is the dominating topic - so by definition they contain topic \(i \). On the other hand, if a document is in \(D_2 \) then it contains topic \(i \) as well. However, by the independent topic inclusion property, the probability that a document with dominating topic \(i' \) contains topic \(i \) as well is \(O(1/K) \). Hence,

\[
\beta_{t+1}^{i,j} \sum_{d \in D_2} \frac{f_{d,j}^t \gamma_{d,i'}}{\sum_d \gamma_{d,i'}} = O(\frac{1}{K}) b \beta_t^{i,j}
\]

For the third summand we provide a trivial bound for the terms \(\frac{f_{d,j}^t \gamma_{d,i'}}{\sum_d \gamma_{d,i'}} \):

\[
\frac{f_{d,j}^t \gamma_{d,i'}}{\sum_d \gamma_{d,i'}} \leq (1 + \epsilon) \beta_{t,j}^* \gamma_{d,i}^* \leq (1 + \epsilon) \beta_{t,j}^* \frac{2b}{C_{\gamma}} \frac{1}{p}
\]

Since again, \(\sum_d \gamma_{d,i'}^* \geq \frac{1}{2} |D(C_i)| \), and again, the number of document in \(D_3 \) is at most \(O(1/K) \) for the same reasons as before, we have that

\[
\beta_{t+1}^{i,j} \sum_{d \in D_3} \frac{f_{d,j}^t \gamma_{d,i'}}{\sum_d \gamma_{d,i'}} \leq O(1/K) b \beta_t^{i,j} = O(1/K) b \beta_t^{i,j}
\]

since \(\beta_t^{i,j} \geq \frac{1}{C_{\beta}} \beta_t^{i,j} \).

From the above three bounds, we get that

\[
\beta_{t+1}^{i,j} \leq O(1/K) b \beta_t^{i,j} \leq \frac{b}{2} \beta_t^{i,j}
\]

Now, we just have to put together the previous two claims: namely we need to show that the conditions for the decay of the non-anchor topic values, and the lower bound on the anchor-topic values are actually preserved during the iterations. We will hence show the following:

Lemma 31. Suppose we initialize with seeded initialization. Then, after \(t \) rounds, if \(j \) is an anchor word for topic \(i \), \(\beta_{t,j}^* \geq (1 - \epsilon) C_{\beta} \beta_t^{i,j} \), and \(\beta_{t,j}^* \leq 2^{-t} C_{\beta} \beta_t^{i,j} \).
Proof. We prove this by induction.

Let’s cover the base case first. In the seed document corresponding to topic \(i \), \(\gamma_{d,i}^* \geq C_i \), so at initialization \(\beta_{i,j}^0 \geq C_i \beta_{i,j}^* \). On the other hand, if topic \(i \) appears in the seed document for topic \(i' \), then after initialization \(\beta_{i,j}^0 \leq C_s \beta_{i,j}^* \). Hence, at initialization, the claim is true.

On to the induction step. If the claim were true at time step \(t \), since \(\beta_{i,j}^t \leq 2^{-t} C_s \beta_{i,j}^* \), by Lemma 28, \(\beta_{i,j}^{t+1} \geq C_i \beta_{i,j}^* \) - so the lower bound still holds at time \(t + 1 \). On the other hand, since \(\beta_{i,j}^t \geq C_i \beta_{i,j}^* \), by Lemma 30, at time \(t + 1 \), \(\beta_{i,j}^{t+1} \leq 2^{-(t+1)} C_s \beta_{i,j}^* \).

Hence, the claim we want follows.

Finally, we show the easy lemma that after the values \(\beta_{i,j}^t \) have decreased to (almost) 0, \(\beta_{i,j}^t \geq \frac{1}{2} \beta_{i,j}^* \).

Lemma 32. Let word \(j \) be an anchor word for topic \(i \). Suppose \(\beta_{i',j}^t \leq 2^{-t} C_s \beta_{i,j}^* \) and

\[
t > 10 \max(\log(N), \log(\frac{1}{\gamma_{\min}}), \log(\frac{1}{\beta_{\min}}))
\]

Then \(4 \beta_{i,j}^t \geq \beta_{i,j}^{t+1} \geq \frac{1}{2} \beta_{i,j}^* \).

Proof. Let us do the lower bound first. It’s easy to see \(\sum_{i'} \beta_{i',j}^t \gamma_{d,i'} \leq 2 \beta_{i,j}^t \gamma_{d,i}^t \). Hence,

\[
\frac{\tilde{f}_{d,j}}{f_{d,j}^t} \beta_{i,j}^t \gamma_{d,i}^t \geq \frac{\tilde{f}_{d,j}}{\sum_{i'} \beta_{i',j}^t \gamma_{d,i'}} \beta_{i,j}^t \gamma_{d,i}^t \geq \frac{1}{2} \beta_{i,j}^* \gamma_{d,i}^*
\]

Hence, after the update,

\[
\beta_{i,j}^{t+1} \geq (1 - \epsilon) \frac{1}{2} \beta_{i,j}^* \frac{\sum_d \gamma_{d,i}^*}{\sum_d \gamma_{d,i}^t} \geq \frac{1}{4} \beta_{i,j}^*
\]

since \(\gamma_{d,i}^t \leq 2 \gamma_{d,i}^* \).

The upper bound is similar. Since \(\sum_{i'} \beta_{i',j}^t \gamma_{d,i'} \geq \beta_{i,j}^* \gamma_{d,i}^t \),

\[
\frac{\tilde{f}_{d,j}}{f_{d,j}^t} \beta_{i,j}^t \gamma_{d,i}^t \leq \frac{\tilde{f}_{d,j}}{\sum_{i'} \beta_{i',j}^t \gamma_{d,i'}} \beta_{i,j}^t \gamma_{d,i}^t \leq (1 + \epsilon) \beta_{i,j}^* \gamma_{d,i}^t
\]

Hence,

\[
\beta_{i,j}^{t+1} \leq (1 + \epsilon) \beta_{i,j}^* \frac{\sum_d \gamma_{d,i}^*}{\sum_d \gamma_{d,i}^t} \leq 2 \beta_{i,j}^*
\]

since \(\gamma_{d,i}^t \geq \frac{1}{2} \gamma_{d,i}^* \). This certainly implies the claim we want.

Furthermore, the following simple application of Lemma 29 is immediate and useful:

Lemma 33. Let \(t > 10 \max(\log N, \log \frac{1}{\gamma_{\min}}, \log \frac{1}{\beta_{\min}}) \). Then, \(\gamma_{d,i}^t \geq \frac{p}{2} \gamma_{d,i}^* \).
C.3 Discriminative words

We established in the previous section that after logarithmic number of steps, the anchor words will be correctly identified, and estimated within a factor of 2. We show that this is enough to cause the support of the discriminative words to be correctly identified too, as well as estimate them to within a constant factor where they are non-zero.

Same as before, we will assume in this section that we can identify the dominating topic. We will crucially rely on the fact that the discriminative words will not have a very large dynamic range comparatively to their total probability mass in a topic. The high level outline will be similar to the case for the anchor words. We will prove that if a discriminative word \(j \) is in the support of topic \(i \), then \(\beta^t_{i,j} \) will always be reasonably lower bounded, and this will cause the values \(\beta_{i',j}^t \) to keep decaying for the topics \(i' \) that the word \(j \) does not belong to.

The reason we will need the bound on the dynamic range, and the proportion of the dominating topic, and the size of the dominating topic, is to ensure that the \(\beta \)'s are always properly lower bounded.

C.3.1 Bounds on the \(\beta^t_{i,j} \) values

First, we show that because the discriminative words have a small range, the values \(\beta^t_{i,j} \) whenever \(\beta^*_i,j \) is non-zero are always maintained to be within some multiplicative constant (which depends on the range of the \(\beta^*_i,j \)).

As a preliminary, notice that having identified the anchor words correctly the \(\gamma \) values are appropriately lower bounded after running the \(\gamma \) update. Namely, by Lemma 33, \(\gamma^t_{d,i} \geq \frac{p}{2} \gamma^*_d,i \).

With this in hand, we show that the \(\beta^t_{i,j} \) values are well upper bounded whenever \(\beta^*_i,j \) is non-zero.

Lemma 34. At any point in time \(t \), \(\beta^t_{i,j} \leq (1 + \epsilon) \frac{2B}{C_l} \beta^*_i,j \).

Proof. Since \(\frac{\tilde{f}_{d,j}}{f_{d,j}} \gamma^t_{d,i} \beta^*_i,j \leq \tilde{f}_{d,j} \) we have:

\[
\beta^{t+1}_{i,j} \leq \frac{\sum_d \tilde{f}_{d,j}}{\sum_d \gamma^*_d,i} \leq 2 \cdot \frac{\sum_d \tilde{f}_{d,j}}{\sum_d \gamma^*_d,i}
\]

On the other hand, I claim that \(\tilde{f}_{d,j} \leq (1 + \epsilon) B \beta^*_i,j \). Indeed, \(\tilde{f}_{d,j} \leq (1 + \epsilon) \sum_i \gamma^*_d,i \beta^*_i,j \), and for any other topic \(i' \), \(\beta^*_i',j \leq B \beta^*_i,j \). Hence,

\[
2 \cdot \frac{\sum_d \tilde{f}_{d,j}}{\sum_d \gamma^*_d,i} \leq 2(1 + \epsilon) DB \beta^*_i,j
\]

However, since \(\gamma^*_d,i \geq C_l \), the previous expression is at most

\[
\frac{2(1 + \epsilon) DB \beta^*_i,j}{DC_l} = \frac{2(1 + \epsilon) B}{C_l} \beta^*_i,j
\]

So, we get the claim we wanted.

The lower bound on the \(\beta^t_{i,j} \) values is a bit more involved. To show a lower bound on the \(\beta^t_{i,j} \) values is maintained, we will make use of both the fact that the discriminative words have a small range, and that we have some small, but reasonable proportion of documents where \(\gamma^*_d,i \geq 1 - \delta \). More precisely, we show:

Lemma 35. Let \(\beta^t_{i,j} \leq \frac{2(1 + \epsilon) B}{C_l} \beta^*_i,j \) for all topics \(i \) that word \(j \) belongs to, and let \(\beta^t_{i,j} \geq \frac{C_l}{B} \beta^*_i,j \). Then, \(\beta^{t+1}_{i,j} \geq \frac{C_l}{B} \beta^*_i,j \) as well.

Proof. Let’s call \(D_\delta \) the documents where \(\gamma^*_d,i \geq 1 - \delta \). We can certainly lower bound

\[
\beta^{t+1}_{i,j} \geq \frac{\sum_{d \in D_\delta} \frac{\tilde{f}_{d,j}}{f_{d,j}} \gamma^t_{d,i} \beta^*_i,j}{\sum_{d \in D} \gamma^*_d,i}
\]
First, let’s focus on \(\frac{\hat{f}_{d,j}^t}{f_{d,j}^t} \). Certainly,

\[
\hat{f}_{d,j} \geq (1 - \epsilon)(1 - \delta) \beta_{i,j}^t
\]

(C.3)

Furthermore, since \(\sum_{d \in D_d} \beta_{d,i}^t \geq \frac{1}{2} \sum_{d \in D_d} \gamma_{d,i}^t \) and \(\sum_d \gamma_{d,i}^t \leq 2 \sum_d \gamma_{d,i}^* \), we have that

\[
\frac{\sum_{d \in D_d} \gamma_{d,i}^t}{\sum_d \gamma_{d,i}^*} \geq \frac{1}{2} \frac{8}{B^2} (1 - \delta) = \frac{2}{B} (1 - \delta)
\]

(C.4)

Finally, we claim that \(\frac{\beta_{i,j}^t}{f_{d,j}^t} \geq \frac{1}{2} \). Massaging this inequality a bit, we get it’s equivalent to:

\[
\frac{\beta_{i,j}^t}{f_{d,j}^t} \geq \frac{1}{2} \iff \beta_{i,j}^t \geq \sum_{d \in D_d} \gamma_{d,i}^t = 2 \beta_{i,j}^t
\]

It’s certainly sufficient for this that \(\gamma_{d,i}^t \geq 1 - \frac{1}{B^2} \), but since since \(\gamma_{d,i}^* \geq 1 - \delta \), by the definition of \(\delta \) and Lemmas 26, 37, 38, this certainly holds.

Together with C.4 and C.3, we get that

\[
\beta_{i,j}^{t+1} \geq (1 - \epsilon)(1 - \delta) \frac{2}{B} \beta_{i,j}^t
\]

But, by our assumptions, \((1 - \epsilon)(1 - \delta)^2 \geq C_t \), so the claim follows.

\[\square\]

C.3.2 Decreasing \(\beta_{i',j}^t \) values

Finally, we show that if the discriminative word \(j \) does not belong in topic \(i' \), the value for \(\beta_{i',j}^t \) will keep dropping. More precisely, the following is true:

Lemma 36. Let word \(j \) and topic \(i \) be such that \(\beta_{i',j}^t = 0 \) and let \(\beta_{i',j}^t \leq b \). Furthermore, let for all the topics \(i \) that \(j \) belongs to hold: \(\beta_{i,j}^t \geq 1/C_\beta \beta_{i',j}^t \). Finally, let \(\gamma_{d,i}^t \geq \frac{1}{\gamma_{d,i}^*} \gamma_{d,i}^* \) for some constant \(C_\gamma \). Then, \(\beta_{i,j}^{t+1} \leq b/2 \).

Proof. We proceed similarly as the analogous claim for anchor words. We split the update as

\[
\beta_{i',j}^{t+1} = \beta_{i',j}^t \left(\frac{\sum_{d \in D_1} \hat{f}_{d,j}^t \gamma_{d,i'}^t}{\sum_d \gamma_{d,i'}^t} + \frac{\sum_{d \in D_2} \hat{f}_{d,j}^t \gamma_{d,i'}^t}{\sum_d \gamma_{d,i'}^t} \right)
\]
for some appropriate partitioning of the documents D_1, D_2.

Namely, let D_1 be documents which do not contain any topic to which word j belongs, the D_2 documents which contain at least one topic word j belongs to.

For all the documents in D_1, $f_{d,j}^* = 0$, and we will provide a good bound for the terms $\tilde{f}_{d,j}^*/f_{d,j}^*$ in D_2, this way, we’ll ensure $\beta_{i,j}^t$ gets multiplied by a quantity which is $o(1)$ to get $\beta_{i,j}^{t+1}$, which is of course enough for what we want.

Bounding the terms in D_2 is even simpler than before. We have:

$$f_{d,j}^* = \sum_i \beta_{i,j}^t \gamma_{d,i}^t \geq \frac{1}{C_\beta C_\gamma} \sum_i \beta_{i,j}^* \gamma_{d,i}^* = \frac{1}{C_\beta C_\gamma} f_{d,j}^*$$

Hence, $\frac{f_{d,j}^*}{f_{d,j}^*} \leq C_\beta C_\gamma$.

Then we have:

$$\frac{\sum_d \tilde{f}_{d,j}^* \gamma_{d,i}^*}{\sum_d \gamma_{d,i}^*} \leq (1 + \epsilon) \frac{\sum_d f_{d,j}^* \gamma_{d,i}^*}{\sum_d \gamma_{d,i}^*} \leq 4(1 + \epsilon) \frac{\sum_d f_{d,j}^* \gamma_{d,i}^*}{\sum_d \gamma_{d,i}^*}$$

But now, by the "weak topic correlation" property, $\sum_{d\in D_2} C_\beta C_\gamma \gamma_{d,i}^* = o(1)$. Indeed, D consists of the documents where i' is the dominating topic. In order for the document to belong to D_2, at least one of the topics word j belongs to must belong in the document as well. Since the topic only belongs to $o(K)$ of the topics, and each document contains only a constant number of topics, by the small topic correlation property, the claim we want follows.

But then, clearly, $4\sum_{d\in D_2} C_\beta C_\gamma \gamma_{d,i}^* = o(1)$ as well.

Hence, $\beta_{i',j}^{t+1} = o(1) \beta_{i',j}^t \leq \frac{1}{2} \beta_{i',j}^t$, which is what we need. \qed

C.4 Thresholding and parameter range

To complete the proofs of the claims for Phase I and II, we need to show that at any point in time we correctly identify the dominant topic, in order for the thresholding operation to work. Furthermore, in order to maintain the lower bounds on the estimates for the discriminative words, we will need to make sure that $\gamma_{d,i}^t$ is large as well in the documents where $\gamma_{d,i}^t \geq 1 - \delta$.

Let’s proceed to the problem of detecting the largest topic first. By Lemma 27 all we need to do is bound R_f and R_β at any point in time during this phase. To do this, let’s show the following lemma:

Lemma 37. Suppose for the anchor words $\beta_{i,j}^t \geq C_1 \beta_{i,j}^*$, for the discriminative words $\beta_{i,j}^t \geq C_2 \beta_{i,j}^*$. Then, $KL(\beta_i^t \parallel \beta_i^*) \leq p_i \log(\frac{1}{C_1}) + (1 - p_i) \log(\frac{1}{C_2})$.

Proof. This is quite simple. Since log is an increasing function,

$$KL(\beta_i^t \parallel \beta_i^*) = \sum_j \beta_{i,j}^t \log(\frac{\beta_{i,j}^t}{\beta_{i,j}^*}) \leq p_i \log(\frac{1}{C_1}) + (1 - p_i) \log(\frac{1}{C_2})$$

\qed

Lemma 38. Suppose for the anchor words $\beta_{i,j}^t \geq C_1 \beta_{i,j}^*$, for the discriminative words $\beta_{i,j}^t \geq C_2 \beta_{i,j}^*$. Then, $min_i KL(\tilde{f}_{d,j}^t || f_{d,j}^*) \leq (p \log(\frac{1}{C_1}) + (1 - p) \log(\frac{1}{C_2}))$.

Proof. Also simple. The value of $KL(\tilde{f}_{d,j}^t || f_{d,j}^*)$ one gets by plugging in $\gamma_{d,i}^* = \gamma^*$ is exactly what is stated in the lemma. \qed
Now, we’ll just use the above two lemmas combined from our estimates from before. We know, for all the anchor words, that $\beta_{t,i,j} \geq C_t \beta^*_{t,i,j}$, and that for the discriminative words, $\beta_{t,i,j} \geq \frac{C_t}{B} \beta^*_{t,i,j}$. Hence, by lemma 37, at any point in time $KL(\beta^*_{t,i}||\beta^*_{t,i}) \leq p \log(\frac{1}{C_t}) + (1 - p) \log(\frac{B}{C_t})$. So, by lemma 27, it’s enough that

$$C_t - C_s \geq \frac{1}{1 - \epsilon_p} \frac{2}{p} \left(\frac{1}{C_t} \right) \left(\log(\frac{1}{C_t}) + (1 - p) \log(BC_t) \right).$$

Since $\frac{2}{p} \sqrt{\frac{1}{2} (p \log(\frac{1}{C_t}) + (1 - p) \log(BC_t))} = \frac{2}{p} \sqrt{\frac{1}{2} \log(\frac{1}{C_t}) + (1 - p) \log B}$, to get a sense of the parameters one can achieve, for detecting the dominant topic, it’s sufficient that $C_t - C_s \geq \frac{1}{1 - \epsilon_p} \frac{2}{p} \max(\log(\frac{1}{C_t}), (1 - p) \log B)$.

If one thinks of C_t as $1 - \eta$ and $p \geq 1 - \frac{\eta}{\log B}$, since log$(\frac{1}{C_t}) \approx 1 + \eta$ roughly we want that $C_t - C_s \gg \frac{2}{p} \sqrt{\eta}$.

(One takeaway message here is that the weight we require to have on the anchors depends only logarithmically on the range B.)

Let’s finally figure out what the topic proportions must be in the “heavy” documents. In these, we want $\gamma^*_{d,i} \geq 1 - \frac{C_t^2}{2B} + \frac{1 - \epsilon_p}{1 - \epsilon_p} \frac{2}{p} \left(\frac{1}{C_t} \right) \left(\log(\frac{1}{C_t}) + (1 - p) \log(BC_t) \right)$. A similar approximation to the above gives that we roughly want $\gamma^*_{d,i} \geq 1 - \frac{2C_t}{2B} + \frac{1 - \epsilon_p}{1 - \epsilon_p} \frac{2}{p} \sqrt{\eta}$.

C.5 Getting the supports correct

At the end of the previous section, we argued that after $\approx \log n$ rounds, we will identify the anchor words correctly, and the supports of the discriminative words as well. Furthermore, we will also have estimated the values of the non-zero discriminative word probabilities, as well the anchor word probabilities up to a multiplicative constant. Then, I claim that from this point onward at each of the γ^i steps, the γ^i values we get will have the correct support. Namely, the following is true:

Lemma 39. Suppose for the anchor words and discriminative words j, if $\beta^*_{t,i,j} = 0$, it’s true that $\beta^t_{t,i,j} = o(\frac{1}{n})$.

Furthermore, suppose that if $\beta^*_{t,i,j} \neq 0$, $\frac{1}{C_t} \beta^*_{t,i,j} \leq \beta^t_{t,i,j} \leq C_t \beta^*_{t,i,j}$ for some constant C_β.

Then, when performing KL minimization with respect to the γ variables, whenever $\gamma^*_{d,i} = 0$ we have $\gamma^t_{d,i} = 0$.

Proof. Let $\gamma^*_{d,i} = 0$. If $\gamma^t_{d,i} \neq 0$, then the KKT conditions imply:

$$\sum_j \frac{\hat{f}_{d,i,j}}{f_{d,i,j}} \beta^*_{t,i,j} = 1.$$ (C.5)

The only terms that are non-zero in the above summation are due to words j that belong to at least one topic i' in the document. Let I be the set of words that belong to topic i as well.

By Lemma 33, we know that $\gamma^*_{d,i} \geq p/2 \gamma^*_{d,i}$. Since also $\beta^*_{t,i,j} \geq \frac{1}{C_t} \beta^*_{t,i,j}$, $f_{d,i,j} \geq \frac{p}{C_t} f_{d,i,j}$. Since $\beta^*_{t,i,j} = o(\frac{1}{n})$ for words j not in the support of topic I,

$$\sum_{j \notin I} \frac{\hat{f}_{d,i,j}}{f_{d,i,j}} \beta^*_{t,i,j} = o(1)$$

On the other hand, for words in I, $\frac{\hat{f}_{d,i,j}}{f_{d,i,j}} \beta^*_{t,i,j} \leq (1 + \epsilon) \frac{2C_t^2}{p} \beta^*_{t,i,j}$, so $\sum_{j \in I} \frac{\hat{f}_{d,i,j}}{f_{d,i,j}} \beta^*_{t,i,j} = o(1)$, by the small support intersection property.

However, this contradicts C.5, so we get what we want.

This means that after this phase, we will always correctly identify the supports of the γ variables as well.
C.6 Alternating minimization

Now, finishing the proof of Theorem C is trivial. Namely, because of Lemmas 39, 31, and the analogue of 31, we are basically back to the case where we have the correct supports for both the β and γ variables.

The only thing left to deal with is the fact that the β variables are not quite zero.

Let j be an anchor word for topic i. Similarly as in lemma 33, for

$$t > 10 \max(\log N, \log(\frac{1}{\epsilon \gamma_{d,i}}), \log(\frac{1}{\epsilon \beta_{i,j}}))$$

it holds that $\frac{f^*_d}{f_{d,j}} \geq (1 - \epsilon) \frac{\beta^*_i \gamma^*_d}{\beta^*_{i,j} \gamma^*_d}$. The same inequality is true if j is a lone word for topic i in document d.

Therefore, after $\log(\frac{1}{\log(1 + \epsilon)^7}) = O(\log(\frac{1}{\epsilon}))$ iterations we’ll get

$$(1 - \epsilon)^7 \beta^*_{i,j} \leq \beta^t_{i,j} \leq \frac{1}{(1 - \epsilon)^7} \beta^*_{i,j}$$

and

$$(1 - \epsilon)^7 \gamma^*_{i,j} \leq \gamma^t_{i,j} \leq \frac{1}{(1 - \epsilon)^7} \gamma^*_{i,j}$$

D Justification of prior assumptions

In this section we provide a brief motivation for our choice of properties on the topic model instances we are looking at. Nothing in the other sections crucially depends on this section, so it can be freely skipped upon first reading.

Most of our properties on the topic priors are inspired from what happens with the Dirichlet prior - specifically, variants of all of the “weak correlations” between topics hold for Dirichlet. Essentially the only difference between our assumptions and Dirichlet is the lack of smoothness. (Dirichlet is sparse, but only in the sense that it leads to a few “large” topics, but the other topics may be non-negligible as well.)

To the best of our knowledge, the lemmas proven here were not derived elsewhere, so we include them here for completeness.

For all of the claims below, we will be concerned with the following scenario:

$$\vec{\gamma} = (\gamma_1, \gamma_2, \ldots, \gamma_K)$$

will be a vector of variables, and $\vec{\alpha} = (\alpha_1, \alpha_2, \ldots, \alpha_k)$ a vector of parameters. We will let $\vec{\gamma}$ be distributed as $\vec{\gamma} := \text{Dir}(\alpha_1, \alpha_2, \ldots, \alpha_k)$, where $\alpha_i = C_i/k^c$, for some constants C_i and $c > 1$.

D.1 Sparsity

To characterize the sparsity of the topic proportions in a document, we will need the following lemma from (Telgarsky, 2013):

Lemma 40. For a Dirichlet distribution with parameters $(C_1/k^c, C_2/k^c, \ldots, C_k/k^c)$, the probability that there are more than $c_0 \ln k$ coordinates in the Dirichlet draw that are $\geq 1/k^{\alpha}$ is at most $1/k^{c_0}$.

It’s clear how this related to our assumption: if one considers the coordinates $\geq 1/k^{c_0}$ as “large”, we assume, in a similar way, that there are only a few “large” coordinates. The difference is that we want the rest of the coordinates to be exactly zero.

D.2 Weak topic correlations

We will prove that the Dirichlet distribution satisfies something akin to the weak topic correlations property. We prove that when conditioning on some small ($o(K)$) set of topics being small, the marginal distributions for the rest of the topic proportions is very close to the original one. So certainly, this implies our “weak topic correlations” property.

The following is true:
Lemma 41. Let \(\bar{\gamma} = (\gamma_1, \gamma_2, \ldots, \gamma_K) \) be distributed as specified above.

Let \(S \) be a set of topics of size \(o(K) \), and let's denote by \(\gamma_S \) the vector of variables corresponding to the topics in the set \(S \), and \(\gamma_{\bar{S}} \) the rest of the coordinates. Furthermore, let's denote by \(\bar{\gamma}_S \) the distribution of \(\gamma_S \) conditioned on all the coordinates of \(\gamma_{\bar{S}} \) being at most \(1/K^{c_1} \) for \(c_1 > 1 \).

Then, for any \(i \in \bar{S} \) and \(\gamma = 1 - \delta, \) any \(\delta = \Omega(1) \),
\[
\mathbb{P}_{\gamma_{\bar{S}}}(\gamma_i = \gamma) = (1 \pm o(1))\mathbb{P}_{\gamma_S}(\gamma_i = \gamma).
\]

Proof. It’s a folklore fact that if \(\bar{Y} = \text{Dir}(\bar{\alpha}) \), then
\[
(Y_1, Y_2, \ldots, Y_{i-1}, Y_{i+1}, \ldots, Y_K | Y_i = y_i) = (1 - y_i)\text{Dir}(\alpha_1, \alpha_2, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_K)
\]
Applying this inductively, we get that \(\bar{\gamma}_S = (1 - \sum_{j \in S} \gamma_i)\text{Dir}(\bar{\alpha}) \). Let's denote \(s := \sum_{j \in S} \gamma_i \), and \(\bar{s} = \sum_{i \in S} \alpha_i \). Then, since \(\gamma_i \leq 1/K^{c_1} \) for \(i \in S \), \(s = o(1) \). Similarly, \(\bar{s} = o(1) \).
For notational convenience, let's call \(\bar{\alpha}_0 = \sum_{i \in S} \alpha_i \), and \(\alpha_0 = \sum_i \alpha_i - \bar{\alpha}_0 + \bar{s} \).

The marginal distribution of variable \(Y_i \) where \(\bar{Y} = \text{Dir}((\bar{\alpha}) \) is \(\text{Beta}(\alpha_i, \alpha_0 - \alpha_i) \).

Hence,
\[
\mathbb{P}_{\gamma_S}(\gamma_i = \gamma) = \frac{1}{B(\alpha_i, \bar{\alpha}_0 + \bar{s} - \alpha_i)} \gamma^\alpha \int_0^1 x^{\alpha-1} (1 - \gamma) \bar{\alpha}_0 + \bar{s} - \alpha_i - 1
\]
and
\[
\mathbb{P}_{\bar{\gamma}_S}(\gamma_i = \gamma) = \frac{1}{B(\alpha_i, \bar{\alpha}_0 - \alpha_i)} \gamma^\alpha \int_0^1 x^{\alpha-1} (1 - \gamma) \bar{\alpha}_0 - \alpha_i - 1
\]

The following holds:
\[
\frac{\gamma^\alpha \int_0^1 x^{\alpha-1} (1 - \gamma) \bar{\alpha}_0 + \bar{s} - \alpha_i - 1}{(1 - s)^{\alpha_i - 1} (1 - \gamma)^{\bar{\alpha}_0 + \bar{s} - \alpha_i - 1}} =
\]
\[
\frac{(1 - \gamma)^{\alpha_i - 1}}{(1 - s)^{\alpha_i - 1}} \int_0^1 x^{\alpha_i - 1} (1 - \gamma) \bar{\alpha}_0 - \alpha_i - 1
\]

Now, I claim the above expression is \(1 \pm o(1) \).
We'll just prove this for each of the terms individually. Since \((1 + \frac{s}{1 - s - \gamma}) \geq 1 \) and \(-1 - \alpha_i \leq -1 \),
\[
(1 - \gamma)^{\alpha_i - 1} \leq 1 - \alpha_i \leq 1 - \delta, \text{ for some constant } \delta, \text{ by our assumptions.}
\]

For the second term, since \(1 - \gamma \leq 1 \) and \(\bar{s} \geq 0 \), \((1 - \gamma)^{\bar{\alpha}_0 - \alpha_i - 1} \leq 1 \).
On the other hand, again by Bernoulli’s inequality, \((1 - \gamma)^{\bar{\alpha}_0 - \alpha_i - 1} \leq 1 - \delta, \text{ as we needed.}
\]

Comparing \(B(\alpha_i, \bar{\alpha}_0 + \bar{s} - \alpha_i) \) and \(B(\alpha_i, \bar{\alpha}_0 - \alpha_i) \) is not so much more difficult. By definition, \(B(\alpha_i, \bar{\alpha}_0 - \alpha_i) = \int_0^1 x^{\alpha_i - 1} (1 - x)^{\bar{\alpha}_0 - \alpha_i - 1} dx \), so
\[
\frac{B(\alpha_i, \bar{\alpha}_0 + \bar{s} - \alpha_i)}{B(\alpha_i, \bar{\alpha}_0 - \alpha_i)} =
\]
\[
\frac{\int_0^1 x^{\alpha_i - 1} (1 - x)^{\bar{\alpha}_0 + \bar{s} - \alpha_i - 1} dx}{\int_0^1 x^{\alpha_i - 1} (1 - x)^{\bar{\alpha}_0 - \alpha_i - 1} dx}
\]

We'll just bound each of the ratios
\[
\frac{x^{\alpha_i - 1} (1 - x)^{\bar{\alpha}_0 + \bar{s} - \alpha_i - 1}}{x^{\alpha_i - 1} (1 - x)^{\bar{\alpha}_0 - \alpha_i - 1}} \leq 1 - o(1), \text{ hence, these are within a constant from each other.}
\]

\(\square \)
D.3 Dominant topic equidistribution

Now, we pass to proving a smooth version of the dominant topic equidistribution property. Namely, for a threshold \(x_0 = o(1) \), we can consider a topic "large" whenever it's bigger than \(x_0 \). We will show that for any topics \(Y_i, Y_j \), the probabilities that \(Y_i > x_0 \) and \(Y_j > x_0 \) are within a constant factor from each other.

Mathematically formalizing the above statement, we will prove the following lemma:

Lemma 42. Let \(\gamma = (\gamma_1, \gamma_2, \ldots, \gamma_K) \) be distributed as specified above. Then, \(\frac{\mathbb{P}(Y_i > x_0)}{\mathbb{P}(Y_j > x_0)} = O(1) \), for any \(i, j \) when \(x_0 = o(1) \).

Proof. As before, the marginal distribution of \(Y_i \) is \(\text{Beta}(\alpha_i, \alpha_0 - \alpha_i) \). The Beta distribution pdf is just

\[
\mathbb{P}(x) = \frac{x^{\alpha_i - 1}(1-x)^{\alpha_0 - \alpha_i - 1}}{B(\alpha_i, \alpha_0 - \alpha_i)},
\]

where \(B(\alpha_i, \alpha_0 - \alpha_i) \) is the Beta function.

Hence, the ratio we care about can be written as

\[
\left(\frac{\int_{x_0}^{1} x^{\alpha_i - 1}(1-x)^{\alpha_0 - \alpha_i - 1} \, dx}{\int_{x_0}^{1} x^{\alpha_j - 1}(1-x)^{\alpha_0 - \alpha_j - 1} \, dx} \right) / \left(\frac{\int_{0}^{1} x^{\alpha_i - 1}(1-x)^{\alpha_0 - \alpha_i - 1} \, dx}{\int_{0}^{1} x^{\alpha_j - 1}(1-x)^{\alpha_0 - \alpha_j - 1} \, dx} \right).
\]

To get a bound on this ratio, it’s sufficient to bound the normalization constants \(B(\alpha_i, \alpha_0 - \alpha_i) \) and \(B(\alpha_j, \alpha_0 - \alpha_j) \), as well as the ratio \(\frac{\int_{0}^{1} x^{\alpha_i - 1}(1-x)^{\alpha_0 - \alpha_i - 1} \, dx}{\int_{0}^{1} x^{\alpha_j - 1}(1-x)^{\alpha_0 - \alpha_j - 1} \, dx} \). Let’s prove first that \(B(\alpha_i, \alpha_0 - \alpha_i) \approx B(\alpha_j, \alpha_0 - \alpha_j) \).

By definition, \(B(\alpha_i, \alpha_0 - \alpha_i) = \int_{0}^{1} x^{\alpha_i - 1}(1-x)^{\alpha_0 - \alpha_i - 1} \, dx \). The way we’ll analyze this quantity is that we’ll divide the integral in two parts, one from 0 to \(\frac{1}{2} \) and one from \(\frac{1}{2} \) to 1.

Since \(\alpha_0 = O(1) \), it follows that \(\alpha_0 - \alpha_i - 1 \geq -1 \) and \(\alpha_0 - \alpha_i - 1 \leq 1 \). Hence, \((1-x)^{\alpha_0 - \alpha_i - 1} = \Theta(1) \).

It follows that

\[
\int_{0}^{1} x^{\alpha_i - 1}(1-x)^{\alpha_0 - \alpha_i - 1} \, dx \approx \int_{0}^{1/2} x^{\alpha_i - 1}(1-x)^{\alpha_0 - \alpha_i - 1} \, dx \lesssim \frac{(1/2)^{\alpha_i}}{\alpha_i} \approx \frac{1}{\alpha_i}
\]

where the last equality follows since \(\frac{1}{2} \leq \frac{1}{2} \leq 1 \).

The second portion is not much more difficult. Since \(\frac{1}{2} \leq \frac{1}{2} \leq 1 \), it follows

\[
\int_{1/2}^{1} x^{\alpha_i - 1}(1-x)^{\alpha_0 - \alpha_i - 1} \, dx \approx \int_{1/2}^{1} (1-x)^{\alpha_0 - \alpha_i - 1} \, dx \approx \int_{0}^{1/2} x^{\alpha_i - 1}(1-x)^{\alpha_0 - \alpha_i - 1} \, dx \approx \frac{(1/2)^{\alpha_0 - \alpha_i}}{\alpha_0 - \alpha_i} \approx \frac{1}{\alpha_0}
\]

where the last two equalities come about since \(-1 \leq \alpha_0 - \alpha_i \leq 1 \).

But the above two estimates proved that for any \(i \), \(B(\alpha_i, \alpha_0 - \alpha_i) \approx \frac{1}{\alpha_i} \), as we needed.

So, we proceed onto bounding

\[
\frac{\int_{0}^{1} x^{\alpha_i - 1}(1-x)^{\alpha_0 - \alpha_i - 1} \, dx}{\int_{x_0}^{1} x^{\alpha_j - 1}(1-x)^{\alpha_0 - \alpha_j - 1} \, dx}
\]

We’ll proceed in a similar fashion as before. We’ll pick some point \(x_T \), and if \(x < x_T \), we will show that \(x^{\alpha_j - 1}(1-x)^{\alpha_0 - \alpha_i - 1} \) is within a constant factor from \(x^{\alpha_i - 1}(1-x)^{\alpha_0 - \alpha_i - 1} \). On the other hand, we will show that part of the integral where \(x > x_T \) is dominated by the part where \(x < x_T \), which will imply the claim we need.

Let’s rewrite the ratio above a little:

\[
\frac{x^{\alpha_j - 1}(1-x)^{\alpha_0 - \alpha_j - 1}}{x^{\alpha_i - 1}(1-x)^{\alpha_0 - \alpha_i - 1}}
\]
\[(\frac{x}{1-x})^{\alpha_j - \alpha_i} = e^{(\alpha_j - \alpha_i) \ln(\frac{x}{1-x})} \]

Proceeding as outlined, I claim that for sufficiently large constants \(C_1, C_2 \), s.t. if \(x \leq 1 - \frac{1}{1 + C_1 e^{\frac{T_i}{\alpha_j + \frac{1}{2}}} / C_2} \),

\[\frac{\alpha_j^{\alpha_j - 1} (1-x)^{\alpha_0 - \alpha_i - 1}}{x^{\alpha_i - 1} (1-x)^{\alpha_0 - \alpha_i - 1}} = O(1). \]

Let’s call \(x_T = 1 - \frac{1}{1 + C_1 e^{\frac{T_i}{\alpha_j + \frac{1}{2}}} / C_2} \).

The claim is then, that if \(x_T \geq x \geq x_0 \), that \((\alpha_j - \alpha_i) \ln(\frac{x}{1-x}) = O(1)\).

First let’s assume, \(\alpha_j - \alpha_i \geq 0 \).

Then, if \(\ln(\frac{x}{1-x}) < 0 \iff x < \frac{1}{2} \), the condition is of course satisfied. So let’s assume \(x \geq \frac{1}{2} \). When \(\frac{1}{2} \leq x \leq x_T \), we get that \(\frac{x}{1-x} \leq C_1 e^{\frac{T_i}{\alpha_j + \frac{1}{2}}} \). Hence, \(\ln(\frac{x}{1-x}) \leq \ln C_1 + \frac{1}{\alpha_j + \frac{1}{2}}. \) It follows that if \(C_1, C_2 \) are sufficiently large,

\[(\frac{x}{1-x})^{\alpha_j - \alpha_i} \leq e^{\ln(\frac{x}{1-x})} = O(1) \]

On the other hand, if \(\alpha_j - \alpha_i \leq 0 \), when \(x \geq \frac{1}{2} \), \((\alpha_j - \alpha_i) \ln(\frac{x}{1-x}) \leq 0 \), so we are fine. However, since \(|\alpha_j - \alpha_i| \leq \alpha_i \), it’s easy to check when \(x \geq \frac{e^{-\alpha_0/\alpha_i}}{1 + e^{-\alpha_0/\alpha_i}} > x_0 \), that \((\alpha_j - \alpha_i) \ln(\frac{x}{1-x}) = O(1)\).

Finally, we want to claim that the portion of the integral from \(x_T \) to 1 is dominated by the portion from \(x_0 \) to \(x_T \).

We can show that the latter portion is \(O(e^{-K}) \), and the first is \(\Omega(1) \).

Let’s lower bound the first portion. We lower bound \(\int_{x_0}^{x_T} x^{\alpha_i - 1} (1-x)^{\alpha_0 - \alpha_i - 1} \, dx \) by \(x_T^{\alpha_i - 1} \int_{x_0}^{x_T} (1-x)^{\alpha_0 - \alpha_i - 1} \, dx \). For the first factor in the above expression, we use Bernoulli’s inequality to prove it’s \(\Omega(1) \).

For the second, the integral will evaluate to

\[\frac{1}{1 - \frac{1}{C_1 e^{\frac{T_i}{\alpha_j + \frac{1}{2}}}} \cdot \alpha_0 - \alpha_i} \]

Let’s lower bound the first term in the numerator. If \(\alpha_0 - \alpha_i \geq 1 \), another application of Bernoulli’s inequality gives: \((1 - x_0)^{\alpha_0 - \alpha_i} \geq 1 - (\alpha_0 - \alpha_i) x_0 \geq 1 - o(1) \). If, on the other hand, \(0 \leq \alpha_0 - \alpha_i \leq 1 \), \((1 - x_0)^{\alpha_0 - \alpha_i} \geq 1 - x_0 \geq 1 - o(1) \).

Then, I claim that \((1 - x_T)^{\alpha_0 - \alpha_i} = e^{-\Omega(K)} \). Indeed, for some constant \(C_3 \),

\[\left(\frac{1}{1+ C_3 e^{\frac{T_i}{\alpha_j + \frac{1}{2}}} \cdot \alpha_0 - \alpha_i} \right)^{\alpha_0 - \alpha_i} = e^{-\ln(C_3 e^{\frac{T_i}{\alpha_j + \frac{1}{2}}} \cdot \alpha_0 - \alpha_i)} \]

However, since \(\alpha_0 = \Omega(K \alpha_j) \) and \(\alpha_0 - \alpha_i = \Omega(\alpha_0) \), the above expression is upper bounded by \(e^{-\Omega(K)} \), which is what we were claiming. Hence, \(x_T^{\alpha_i - 1} \int_{x_0}^{x_T} (1-x)^{\alpha_0 - \alpha_i - 1} \, dx = \Omega(1) \).

Let’s upper bound the latter portion. This expression is upper bounded by \(x_T^{\alpha_i - 1} \int_{x_T}^{1} (1-x)^{\alpha_0 - \alpha_i - 1} \, dx = x_T^{\alpha_i - 1} \left(\frac{1}{1+ C_3 e^{\frac{T_i}{\alpha_j + \frac{1}{2}}} \cdot \alpha_0 - \alpha_i} \right)^{\alpha_0 - \alpha_i} \).

Now, we will separately bound each of \(x_T^{\alpha_i - 1} \) and \(\left(\frac{1}{1+ C_3 e^{\frac{T_i}{\alpha_j + \frac{1}{2}}} \cdot \alpha_0 - \alpha_i} \right)^{\alpha_0 - \alpha_i} \).

The first term can be written as \(\frac{1}{x_T^{\alpha_i}} \). Now, since \(1 - \alpha_i \geq 0 \), we can use Bernoulli’s inequality to lower bound \(x_T^{1-\alpha_i} \) by \(1 - \frac{1}{1+ C_3 e^{\frac{T_i}{\alpha_j + \frac{1}{2}}} \cdot \alpha_0 - \alpha_i} \). Since \(1 - \frac{1}{1+ C_3 e^{\frac{T_i}{\alpha_j + \frac{1}{2}}} \cdot \alpha_0 - \alpha_i} = O(1/e^{\frac{T_i}{\alpha_j + \frac{1}{2}}} \cdot \alpha_0 - \alpha_i) \), and \(1 - \alpha_i \leq 1/2 \), let’s say, \(1 - \frac{1}{1+ C_3 e^{\frac{T_i}{\alpha_j + \frac{1}{2}}} \cdot \alpha_0 - \alpha_i} = \Omega(1) \), i.e. \(x_T^{1-\alpha_i} = O(1) \).

For the second term, we already proved above that \((1-x_T)^{\alpha_0 - \alpha_i} = e^{-\Omega(K)} \), this implies that \(\int_{x_T}^{1} x^{\alpha_i - 1} (1-x)^{\alpha_0 - \alpha_i - 1} \, dx = O(e^{-K}) \), which finishes the proof.
D.4 Independent topic inclusion

Finally, there’s a very simple proxy for “independent topic inclusion”. Again, as above, $\tilde{\gamma}_S = (1 - \sum_{j \in S} \gamma_i) \text{Dir}(\tilde{\alpha}_S)$.

But, if we consider “inclusion” the probability that a given topic is “noticeable” (i.e. $\geq \frac{1}{n_{\text{core}}}$, say), we can use the above Lemma 42 to show that the probability that any topic is “large” (but still $o(1)$) is within a constant for all the topics in \bar{S}.

E On common words

In this section, we show how one would modify the proofs from the previous section to handle common words as well. We stress that common words are easy to handle if one were allowed to filter them out, but we want to analyze under which conditions the variational inference updates could handle them on their own.

The difference in contrast to the previous sections is it’s not clear how to argue progress for the common words: common words do not have lone documents. However, if we can’t argue progress for the common words, then we can’t argue progress for the γ variables, so the entire argument seems to fail.

Formally, let’s consider the following scenario:

- On top of the assumptions we have either in Case Study 1 or Case Study 2, we assume that there are words which show up in all topics, but their probabilities are within a constant B from each other, $B \geq 2$. We will call these common words. (The $B \geq 2$ is without loss of generality. If the claim holds for a smaller B, then it certainly holds for $B = 2$. The only difference is that the estimates to follow could be strengthened, but we assume $B \geq 2$ to get cleaner bounds.)

- For each topic i, if C is the set of common words, $\sum_{j \in C} \beta^*_{i,j} \leq \frac{1}{B^{100}}$, i.e. there isn’t too much mass on these words.

- Conditioned on topic i being dominant, there is a probability of $1 - \frac{1}{B^{100}}$ that the proportion of topic i is at least $1 - \frac{1}{B^{100}}$.

Our analysis here is fairly loose, since the result is anyway a little weak. (E.g. $1 - \frac{1}{B^{100}}$ is not really the best value for the proportion of the dominating topic, or the proportion of such documents required.) At any rate, it will be clear from the proofs that the dependency of the dominating topic on B has to be of the form $1 - \frac{1}{B}$, so it’s not clear one would gain too much from the tightest possible analysis.

The reason we are including this section is to show cases where our proof methods start breaking down. The calculations get quite unwieldy at this point, so we’ll only show how to generalize the proofs from Case Study 1, and only sketch what happens in Case Study 2.

E.1 Phase I with common words

The outline is the same as before. We prove the lower bounds on the γ and β variables first. Namely, we prove:

Lemma 43. Suppose that the supports of β and γ are correct. Then, $\gamma^t_{d,i} \geq \frac{1}{2} \gamma^*_d,i$.

Proof. Similarly as before, multiplying both sides of B.1 by $\gamma^t_{d,i}$, we get that

$$\gamma^t_{d,i} \geq \frac{1}{L_i} \sum_{f} \frac{f^t_{d,j}}{f^t_{d,j}} \beta^t_{i,j} \gamma^t_{d,i} \geq (1 - o(1)) \left(1 - \frac{1}{B^{100}}\right) \gamma^*_d,i \geq \frac{1}{2} \gamma^*_d,i$$

where the second inequality follows since $1 - \frac{1}{B^{100}}$ fraction of the words in topic i is discriminative. □

Lemma 44. Suppose that the supports of the γ and β variables are correct. Additionally, if i is a large topic in d, let $\frac{1}{2} \gamma^*_d,i \leq \gamma^t_{d,i} \leq 3 \gamma^*_d,i$. Then, for a discriminative word j for topic i, $\beta^{t+1}_{i,j} \geq \frac{1}{3} \beta^*_{i,j}$.
Proof. Again, similarly as in Lemma 9,

\[
\beta_{t+1}^{i,j} \geq \frac{\sum_{d \in D_t} (1 - \epsilon) \gamma_{d,i}^t \beta_{t,j}^i}{\sum_{d=1}^D \gamma_{d,i}} \\
= (1 - \epsilon) \beta_{t,j}^* \frac{\sum_{d \in D_t} \gamma_{d,i}^t}{\sum_{d=1}^D \gamma_{d,i}^t}
\]

In the documents where topic \(i\) is the largest, \(\gamma_{d,i}^t \leq 3\gamma_{d,i}^*\). So, we can conclude

\[
\beta_{t+1}^{i,j} \geq (1 - \epsilon) \beta_{t,j}^* \frac{1}{3} \frac{\sum_{d \in D_t} \gamma_{d,i}^*}{\sum_{d=1}^D \gamma_{d,i}^*}
\]

Since \(\sum_{d \in D_t} \gamma_{d,i}^* \geq (1 - o(1))\), as before, we get what we want.

\[\square\]

Lemma 45. Let the \(\beta\) variables have the correct support. Let \(j\) be a discriminative word for topic \(i\), and let \(\beta_{t,j}^i \geq \frac{1}{C_m} \beta_{t,j}^*, \gamma_{d,i}^t \geq \frac{1}{C_m} \gamma_{d,i}^*\), whenever \(\beta_{t,j}^i \neq 0\), \(\gamma_{d,i}^t \neq 0\). Let \(\beta_{t+1}^{i,j} = C_\beta^i \beta_{t,j}^*,\) where \(C_\beta^i \geq 4C_m\), and \(C_m\) is a constant. Then, in the next iteration, \(\beta_{t+1}^{i,j} \leq C_{\beta}^{t+1} \beta_{t,j}^*,\) where \(C_{\beta}^{t+1} \leq \frac{C_\beta^i}{2}\).

Proof. The proof is exactly the same as Lemma 10.

\[\square\]

Now, we finally get to the upper bound of the \(\gamma\) values.

Lemma 46. Fix a particular document \(d\). Let’s assume the supports for the \(\beta\) and \(\gamma\) variables are correct. Furthermore, let \(\frac{1}{C_m} \leq \frac{\beta_{t,j}^i}{\beta_{t,j}^*} \leq C_m\) for some constant \(C_m\). Then, \(\gamma_{d,i}^t \leq 2\gamma_{d,i}^\ast\).

Proof. Again, multiplying B.1 by \(\gamma_{d,i}^t\), we get

\[
\gamma_{d,i}^t = \sum_{j \in L_t} \tilde{f}_{d,j} + \gamma_{d,i}^t \sum_{j \notin L_t} \frac{\tilde{f}_{d,j}}{f_{d,j}} \beta_{t,j}^i + \gamma_{d,i}^t \sum_{j \in C_t} \frac{\tilde{f}_{d,j}}{f_{d,j}} \beta_{t,j}^i
\]

If \(\tilde{\alpha} = \sum_{j \in L_t} \beta_{t,j}^i\), since \(\gamma_{d,i}^t \geq \frac{1}{C_m} \gamma_{d,i}^\ast\),

\[
\frac{\tilde{f}_{d,j}}{f_{d,j}} \leq (1 + \epsilon)C_m^2
\]

If we denote \(\Gamma = \sum_{j \in C_t} \beta_{t,j}^i\), then

\[
\gamma_{d,i}^t \leq (1 + \epsilon) (\tilde{\alpha} \gamma_{d,i}^\ast + C_m^3 (1 - \Gamma - \tilde{\alpha}) \gamma_{d,i}^t + \Gamma B^4 \gamma_{d,i}^t)
\]

Equivalently, \(\gamma_{d,i}^t \leq \frac{(1 + \epsilon) \tilde{\alpha}}{1 - (1 + \epsilon) C_m^3 (1 - \Gamma - \tilde{\alpha}) (1 + \epsilon) \Gamma B^4 \gamma_{d,i}^*}
\]

Then, we claim that \(1 - (1 + \epsilon) C_m^3 (1 - \Gamma - \tilde{\alpha}) (1 + \epsilon) \Gamma B^4 \gamma_{d,i}^\ast \leq 1 + \frac{1}{B^5}\). Indeed, \(\Gamma B^4 \leq B^{-96}\), and \(C_m^3 (1 - \Gamma - \tilde{\alpha}) \leq C_m^3 (1 - \tilde{\alpha}) = o(1)\). Hence,

\[
\frac{(1 + \epsilon) \tilde{\alpha}}{1 - (1 + \epsilon) C_m^3 (1 - \Gamma - \tilde{\alpha}) (1 + \epsilon) \Gamma B^4} \leq \frac{(1 + \epsilon) \tilde{\alpha}}{1 - o(1) - B^{-96}} \leq \frac{(1 + \epsilon) \tilde{\alpha}}{1 - B^{-95}}
\]

Finally, we claim that \(\frac{(1 + \epsilon) \tilde{\alpha}}{1 - B^{-95}} \leq 1 + B^{-50}\). Indeed, this is equivalent to

\[
\tilde{\alpha} \leq (1 + \epsilon)(1 + B^{-50})(1 - B^{-95}) \leq (1 + \epsilon)(1 + B^{-50})
\]

But, since we assume \(B \geq 2\), the claim we need follows easily.

\[\square\]
E.2 Phase II of analysis

Finally, we deal with the alternating minimization portion of the argument. How will we deal with the lack of anchor documents? The almost obvious way: if a document has topic \(i \) with proportion \(1 - \frac{1}{2^{160}} \), it will behave for all purposes like an anchor document, because the dynamic range of word \(\beta_{i,j}^* \) is limited, and the contribution from the other topics is not that significant.

Intuitively, we'll show that \(\frac{\tilde{f}_{d,j}}{\tilde{f}_{d,i}} \approx \frac{\beta_{d,j}^*}{\beta_{d,i}^*} \), so that these documents provide a "push" for the value of \(\beta_{i,j}^* \) in the correct direction.

Lemma 47. Let's assume that our current iterates \(\beta_{i,j}^t \) satisfy \(\frac{\beta_{d,i}^*}{\beta_{d,i}^t} \leq \frac{\beta_{d,j}^*}{\beta_{d,j}^t} \leq C_{\beta}^t \) for \(C_{\beta}^t \geq \frac{1}{(1-\epsilon)^{20}} \). Then, after iterating the \(\gamma \) updates to convergence, we will get values \(\gamma_{d,i}^t \) that satisfy \((C_{\beta}^t)^{1/10} \leq \frac{\gamma_{d,i}^t}{\gamma_{d,i}^0} \leq \frac{(C_{\beta}^t)^{1/10}}{10} \).

Proof. As before, we have that

\[
\gamma_{d,i}^t = \sum_{j \in L_i} \tilde{f}_{d,j} + \gamma_{d,i}^0 \sum_{j \notin L_i} \tilde{f}_{d,j} \beta_{d,j}^t.
\]

Let's denote as \(C_{\gamma}^t = \max_i (\max(\gamma_{d,i}^t, \frac{\gamma_{d,i}^0}{\gamma_{d,i}^0})) \), and let, as before, assume that \(\frac{\gamma_{d,j}^0}{\gamma_{d,i}^0} = C_{\gamma}^t \).

By the definition of \(C_{\gamma}^t \),

\[
\gamma_{d,i}^t = \sum_{j \in L_{i_0}} \tilde{f}_{d,j} + \gamma_{d,i_0}^t \sum_{j \notin L_{i_0}} \tilde{f}_{d,j} \beta_{d,j}^t \leq (1 + \epsilon)(\tilde{\alpha}(\gamma_{d,i_0}^0 + (1 - \tilde{\alpha})(C_{\beta}^t)^2(C_{\gamma}^t)^2\gamma_{d,i_0}^0))
\]

We claim that

\[
(1 + \epsilon)(\tilde{\alpha} + (1 - \tilde{\alpha})(C_{\beta}^t)^2(C_{\gamma}^t)^2) \leq (C_{\gamma}^t)^{1/10}
\]

which will be a contradiction to the definition of \(C_{\gamma}^t \).

After a little rewriting, \(E.1 \) translates to \(\tilde{\alpha} \geq 1 - \frac{1}{(C_{\beta}^t)^{1/10}(C_{\gamma}^t)^{8}} \). By our assumption on \(C_{\gamma}^t, C_{\beta}^t \leq C_{\gamma}^{10} \), so the right hand side above is upper bounded by \(1 - \frac{1}{(C_{\gamma}^t)^{8}} \).

But, Lemma 46 implies that certainly \(C_{\gamma}^t \leq C_{\gamma}^0 \). The function

\[
f(c) = \frac{c^{1/10}}{1 - c^{1/10}} - \frac{1}{c^{1/10}}
\]

can be easily seen to be monotonically decreasing on the interval of interest, and hence is lower bounded by \(\frac{1}{(C_{\gamma}^t)^{1/10} - 1} \). Since \(\tilde{\alpha} = (1 - o(1))(1 - \frac{1}{2^{160}}) \) and \(C_{\gamma}^0 \leq 3 \), the claim we want is clearly true.

The case where \(\gamma_{d,j}^0 - \gamma_{d,u}^0 = C_{\gamma}^t \) is not much more difficult. An analogous calculation as in Lemma 13 gives that to get a contradiction to the definition of \(C_{\gamma}^t \), the condition required is that \(1 - \frac{1}{(C_{\gamma}^t)^{1/10} - 1} \). As before, if \(f(c) = 1 - \frac{1}{1 - c^{1/10}} \), it is easy to check that \(f(c) \) is monotonically increasing in the interval of interest, so lower bounded by

\[
1 - \frac{1}{(1 - \epsilon)(\frac{1}{(1 - \epsilon)^{20}})^{1/10}} = \frac{1 - (1 - \epsilon)}{1 - (1 - \epsilon)^{160}} \geq \frac{1}{160}
\]

But, \(\tilde{\alpha} \geq (1 - \frac{1}{2^{160}})(1 - o(1)) \geq 1 - \frac{1}{160} \), so we get what we want.
Next, we show the following lemma.

Lemma 48. Suppose at time step \(t \), \(\frac{1}{C_{\beta}^t} \gamma_{d,i}^* \leq \gamma_{d,i} \leq C_{\gamma}^t \gamma_{d,i}^* \) and \(\frac{1}{C_{\beta}^t} \beta_{i,j}^* \leq \beta_{i,j} \leq C_{\beta}^t \beta_{i,j}^* \), such that \(C_{\gamma}^t \leq (C_{\beta}^t)^{1/10} \) for \(C_{\beta}^t \geq \frac{1}{(1-\epsilon)^2} \). Then, at time step \(t+1 \), \(1/C_{\beta}^{t+1} \beta_{i,j}^* \leq \beta_{i,j} \leq C_{\beta}^{t+1} \beta_{i,j}^* \), where \(C_{\beta}^{t+1} = (C_{\beta}^t)^{3/4} \).

Proof. Let’s assume a document \(d \) has a dominating topic of proportion at least \(1 - 1/B^{100} \).

Then, we claim that \(\frac{f_{d,j}}{f_{d,j}^*} \geq \frac{1}{(C_{\beta}^t)^{1/4} \beta_{i,j}^*} \). We will do a sequence of rearrangements to get this condition to a simpler form:

\[
\gamma_{d,i}^* + \sum_{i'} \gamma_{d,i'} \frac{\beta_{i,j}^*}{\beta_{i,j}^*} \geq \frac{1}{(C_{\beta}^t)^{1/4}} (\gamma_{d,i}^* + \sum_{i'} \gamma_{d,i'} \frac{\beta_{i,j}^*}{\beta_{i,j}^*})
\]

Let’s upper bound the right hand side by some simpler quantities. We have:

\[
\frac{1}{(C_{\beta}^t)^{1/4}} (\gamma_{d,i}^* + \sum_{i'} \gamma_{d,i'} \frac{\beta_{i,j}^*}{\beta_{i,j}^*}) \leq \frac{1}{(C_{\beta}^t)^{1/4}} C_{\gamma}^t (\gamma_{d,i}^* + \sum_{i'} \gamma_{d,i'} \frac{\beta_{i,j}^*}{\beta_{i,j}^*}) \leq \frac{1}{(C_{\beta}^t)^{1/4}} C_{\gamma}^t (\gamma_{d,i}^* + (C_{\beta}^t)^2 \sum_{i'} \gamma_{d,i'} \frac{\beta_{i,j}^*}{\beta_{i,j}^*})
\]

Hence, it is sufficient to prove

\[
\gamma_{d,i}^* + \sum_{i'} \gamma_{d,i'} \frac{\beta_{i,j}^*}{\beta_{i,j}^*} \geq \frac{1}{(C_{\beta}^t)^{1/4}} C_{\gamma}^t (\gamma_{d,i}^* + (C_{\beta}^t)^2 \sum_{i'} \gamma_{d,i'} \frac{\beta_{i,j}^*}{\beta_{i,j}^*}) \iff
\gamma_{d,i}^* (1 - \frac{C_{\gamma}^t}{(C_{\beta}^t)^{1/4}} (C_{\beta}^t)^2 - 1) B = (1 - \gamma_{d,i}^*) (\frac{C_{\gamma}^t}{(C_{\beta}^t)^{1/4}} (C_{\beta}^t)^2 - 1) B
\]

Again, we can upper bound the right hand side by

\[
\sum_{i'} \gamma_{d,i'} (\frac{C_{\gamma}^t}{(C_{\beta}^t)^{1/4}} (C_{\beta}^t)^2 - 1) B = (1 - \gamma_{d,i}^*) (\frac{C_{\gamma}^t}{(C_{\beta}^t)^{1/4}} (C_{\beta}^t)^2 - 1) B
\]

So, it is sufficient to prove:

\[
(1 - \gamma_{d,i}^*) (\frac{C_{\gamma}^t}{(C_{\beta}^t)^{1/4}} (C_{\beta}^t)^2 - 1) B \leq \gamma_{d,i}^* (1 - \frac{C_{\gamma}^t}{(C_{\beta}^t)^{1/4}}) \iff
\gamma_{d,i}^* (1 - \frac{C_{\gamma}^t}{(C_{\beta}^t)^{1/4}} (C_{\beta}^t)^2 - 1) B \geq (1 - \frac{C_{\gamma}^t}{(C_{\beta}^t)^{1/4}} (C_{\beta}^t)^2 - 1) B \iff
\gamma_{d,i}^* \geq 1 - \frac{1 - \frac{C_{\gamma}^t}{(C_{\beta}^t)^{1/4}}}{(1 - (\frac{C_{\gamma}^t}{(C_{\beta}^t)^{1/4}} (C_{\beta}^t)^2 - 1) B}
\]
It’s easy to check that the expression on the right hand side as a function of \(C_{\beta}^t \) is decreasing. Hence, the RHS is upper bounded by

\[
1 - \frac{1}{1 - (C_{\beta}^t)^{37/20}} + B((C_{\beta}^t)^{37/20} - 1)
\]

Now, let’s analyze this expression. If we let \(f(x) = 1 - \frac{1 - \frac{1}{x^{3/20}}}{1 - \frac{1}{x^{3/20}} + B(x^{37/20} - 1)} \), I claim \(f(x) \) is an increasing function of \(x \). Indeed, we can calculate it’s derivative fairly easily:

\[
f'(x) = -\frac{\frac{3}{20}x^{-\frac{23}{20}}(1 - \frac{1}{x^{3/20}} + B(x^{37/20} - 1)) - (1 - \frac{1}{x^{3/20}})(\frac{3}{20}x^{-\frac{23}{20}} + \frac{37}{20}Bx^{\frac{17}{20}})}{(1 - \frac{1}{x^{3/20}} + B(x^{37/20} - 1))^2}
\]

By the AM-GM inequality, \(3x^{-23/20} + 37x^{17/20} \geq 40((x^{17/20})^3(x^{-23/20})^3)^{1/40} = 40x^{14/20} \), so \(f'(x) \) is positive, so the RHS, as a function of \(C_{\beta}^t \), is (x) is increasing.

So, it is sufficient to satisfy the inequality when \(C_{\beta}^t = C_{\beta}^0 \). One can check however that by Lemma 44 and 45 this is true.

Proceeding to the lower bound, a similar calculation as before gives that the necessary condition for progress is:

\[
\gamma_{d,i}^t \geq 1 - \frac{1}{1 - (C_{\gamma}^t)^{1/4}} + \frac{1}{B}((C_{\gamma}^t)^{1/4} - 1)
\]

Again, the right hand side expression is decreasing in \(C_{\gamma} \), so it is certainly upper bounded by

\[
1 - \frac{1}{1 - (C_{\beta}^t)^{3/20}} + \frac{1}{B}((C_{\gamma}^t)^{3/20} - 1)
\]

Now, the claim is that this expression is increasing in \(C_{\beta}^t \). Again, denoting \(f(x) = 1 - \frac{1 - x^{3/20}}{1 - \frac{1}{x^{3/20}} + B(x^{37/20} - 1)} \)

\[
f'(x) = -\frac{-\frac{3}{20}x^{-17/20}(1 - x^{3/20} + \frac{1}{B}(\frac{1}{x^{3/20}} - 1)) - (1 - x^{3/20})(\frac{3}{20}x^{-17/20} - \frac{1}{B}x^{37/20} - 1)\}
\]

By the AM-GM inequality, \(3x^{-17/20} + 37x^{-57/20} \geq 40((x^{-17/20})^3(x^{-57/20})^3)^{1/40} = 40x^{-54/20} \), so \(f'(x) \) is negative, so the RHS, as a function of \(C_{\beta}^t \), is decreasing. So it suffices to check the inequality when \(C_{\beta}^t = (1 - e)^{20} \). In this case, we want to check that

\[
1 - \frac{1}{B^{100}} \geq 1 - \frac{1}{1 - (1 - e)^{37/20}} + \frac{1}{B}((1 - e)^{37/20} - 1)
\]

Since \(1 - \frac{1}{1 - (1 - e)^{37/20}} \leq 1 - \frac{3B}{37 + 3B} \), and \(B \geq 2 \), this is easily seen to be true.

Now, we’ll split the \(\beta \) update into two parts: documents where topic \(i \) is at least \(1 - 1/B^{100} \), and the rest of them. In the first group, as we showed above, \(\ell_{d,i}^t \geq \frac{1}{C_{\beta}^t} \). In the second group, we can certainly claim that \(\ell_{d,i}^t \geq \frac{1}{C_{\beta}^t} \) from the inductive hypothesis. If we denote the set of documents where topic \(i \) is at least \(1 - 1/B^{100} \) as \(D_1 \), we get that
\[\beta_{t+1}^{i,j} = \beta_{t}^{i,j} \frac{f_{t+1}^{i,j} \gamma_{t+1}^{i}}{\sum_{d \in D} f_{d,t}^{i,j} \gamma_{d,t}^{i}} \geq \]

\[\frac{\sum_{d \in D_t} \frac{1}{(C_\beta^t)^{1/2}} C_\gamma' \beta_{t}^{i,j} \gamma_{d,t}^{i}}{(C_\theta^t) \sum_{d \in D} \gamma_{d,i}^*} + \sum_{d \in D \setminus D_t} \frac{1}{(C_\gamma'^t)^2 (C_\theta^t)^3} \beta_{t}^{i,j} \gamma_{d,i}^* \]

If we denote \(\mu = \frac{\sum_{d \in D} \gamma_{d,i}^*}{\sum_{d \in D} \gamma_{d,i}^*} \), then

\[\beta_{t+1}^{i,j} \geq \mu \frac{\beta_{t}^{i,j}}{(C_\beta^t)^{1/4} (C_\gamma^t)^2} + (1 - \mu) \frac{\beta_{t}^{i,j}}{(C_\beta^t)^{2} (C_\gamma^t)^3} \]

So, to prove \(\beta_{t+1}^{i,j} \geq \frac{1}{C_\beta^{t+1}} \beta_{t}^{i,j} \), it’s sufficient to show

\[\mu \frac{\beta_{t}^{i,j}}{(C_\beta^t)^{1/4} (C_\gamma^t)^2} + (1 - \mu) \frac{\beta_{t}^{i,j}}{(C_\beta^t)^{2} (C_\gamma^t)^3} \geq \frac{1}{C_\beta^{t+1}} \]

\[\mu > \frac{\frac{1}{(C_\beta^t)^{1/4} (C_\gamma^t)^2} - \frac{1}{(C_\beta^t)^{2} (C_\gamma^t)^3}}{\frac{1}{(C_\beta^t)^{1/4} (C_\gamma^t)^2} - \frac{1}{(C_\beta^t)^{2} (C_\gamma^t)^3}} \]

Given that \(C_\gamma^t \leq (C_\beta^t)^{1/10} \), it’s sufficient to show

\[\mu > 1 - \frac{\frac{1}{(C_\beta^t)^{1/4} (C_\gamma^t)^2} - \frac{1}{(C_\beta^t)^{2} (C_\gamma^t)^3}}{\frac{1}{(C_\beta^t)^{1/4} (C_\gamma^t)^2} - \frac{1}{(C_\beta^t)^{2} (C_\gamma^t)^3}} \text{ when } C_\beta^t = (\frac{1}{1-\epsilon})^{20} \text{, which is easily checked to be true.} \]

In the same way, one can prove that \(\beta_{t+1}^{i,j} \leq (C_\beta^t)^{3/4} \beta_{t}^{i,j} \)

Putting lemmas 47 and 48 together, we get that the analogue of Lemma 15:

Lemma 49. Suppose it holds that \(\frac{1}{C_\beta^t} \leq \frac{\beta_{t}^{i,j}}{\beta_{t}^{i,j}} \leq C^t \), \(C^t \geq \frac{1}{1-\epsilon}^{20} \). Then, after one KL minimization step with respect to the \(\gamma \) variables and one \(\beta \) iteration, we get new values \(\beta_{t+1}^{i,j} \) that satisfy \(\frac{1}{C_\beta^{t+1}} \leq \beta_{t+1}^{i,j} \leq C^{t+1} \), where \(C^{t+1} = (C^t)^{3/4} \)

As a corollary,

Corollary 50. Lemma 49 above implies that Phase III requires \(O(\log(\frac{1}{\log(1+\epsilon)})) = O(\log(\frac{1}{1-\epsilon})) \) iterations to estimate each of the topic-word matrix and document proportion entries to within a multiplicative factor of \(\frac{1}{1-\epsilon} \).

F. Estimates on number of documents

Finally, we state a few helper lemmas to estimate how many documents will be needed. The properties we need are that the empirical marginals of a dominating topic in the documents where it’s dominating are close to the actual ones, and similarly that the empirical marginals of the dominating topic, conditioned on the set of topics that a discriminative word belongs to not being present match are close to the actual ones.

The former statement is the following:
Lemma 51. Let \(E_i = \mathbf{E}[\gamma_{d,i}^* | \gamma_{d,i}^* \text{ is dominating}] \). If the total number of documents is \(D = \Omega(K \log^2 K) \), and \(D_i \) is the number of documents where \(i \) is the dominant topic, then with high probability, for all topics \(i \),

\[
(1 - \epsilon)E_i \leq \frac{1}{D_i} \sum_{d \in D_i} \gamma_{d,i}^* \leq (1 + \epsilon)E_i
\]

Proof. Since documents are generated independently, \(\Pr\left[\frac{1}{D_i} \sum_{d \in D_i} \gamma_{d,i}^* > (1 + \epsilon)E_i \right] \leq e^{-\frac{\epsilon^2 D_i E_i}{2}} \) by Chernoff.

Since there are at most \(T \) topics per document, \(E_i \geq \frac{1}{T} \), so \(\Pr\left[\frac{1}{D_i} \sum_{d \in D_i} \gamma_{d,i}^* > (1 + \epsilon)E_i \right] \leq e^{-\frac{\epsilon^2 D_i}{2T}} \).

An analogous statement holds for \(\Pr\left[\frac{1}{D_i} \sum_{d \in D_i} \gamma_{d,i} < (1 - \epsilon)E_i \right] \).

Then, if \(D_i = \frac{\log^2 K}{\epsilon^2} \), by union bounding, we get that with high probability, for all topics, \((1 - \epsilon)E_i \leq \frac{1}{D_i} \sum_{d \in D_i} \gamma_{d,i} \leq (1 + \epsilon)E_i \).

However, the probability of a topic being dominating is \(C_i/K \) for some constant \(C_i \). So, by another Chernoff bound,

\[
\Pr[D_i < (1 - \epsilon)C_i D/K] \leq e^{-\frac{\epsilon^2 C_i D}{2K}}
\]

(F.1)

So, if we take \(D = \frac{K \log^2 K}{\epsilon^2} \), with high probability, for all topics, \(D_i = \Theta(D/K) \).

Putting everything together, we get that if \(D = \frac{K \log^2 K}{\epsilon^2} \), with high probability,

\[
(1 - \epsilon)E_i \leq \frac{1}{D_i} \sum_{d \in D_i} \gamma_{d,i}^* \leq (1 + \epsilon)E_i
\]

\(\square \)

Next, we calculate how many documents are needed to match the marginals of the dominating topics, conditioned on a small subset (of size \(o(K) \)) of the topics not being included in a document. More formally,

Lemma 52. For the discriminative word \(j \), let \(jS \) be the set of topics it belongs to. For a topic \(i \in jS \), let \(\mathbf{E}[\gamma_{d,j}^* | \gamma_{d,j}^* \text{ is dominating}, \gamma_{d,i}^* = 0, \forall i' \in jS] = \gamma_{d,i}^* \). Let \(D_{i,jS} \) be the number of documents where \(i \) is dominating, and \(\gamma_{d,i'}^* = 0, \forall i' \in jS \).

If the number of documents \(D \geq \frac{K \log^2 N}{\epsilon^2} \), then with high probability, for all topics \(i \) and discriminative words \(j \), \((1 - \epsilon)E_{i,jS} \leq \frac{1}{D_{i,jS}} \sum_{d \in D_{i,jS}} \gamma_{d,i}^* \leq (1 + \epsilon)E_{i,jS} \).

Proof. Since \(E_{i,jS} = (1 + o(1))E_i \), by the weak topic correlation property, an analogous proof as above shows that if we get that if \(D_{i,jS} = \frac{\log^2 K}{\epsilon^2} \), with high probability, \((1 - \epsilon)E_{i,jS} \leq \frac{1}{D_{i,jS}} \sum_{d \in D_{i,jS}} \gamma_{d,i}^* \leq (1 + \epsilon)E_{i,jS} \).

But by the independent topic inclusion property, the probability of generating a document \(D \) with \(i \) being the dominating topic, s.t. no topics in \(jS \) appear in it is \(\Theta(1/K) \). So, again by Chernoff,

\[
\Pr[D_{i,jS} < (1 - \epsilon)C_i D/K] \leq e^{-\frac{\epsilon^2 C_i D}{2K}}
\]

(F.2)

However, if the total number of documents is \(D \), \(D_i = \Omega(D/K) \) and \(D_{i,jS} = \Omega(D/K) \), so we get what we wanted. So, if we take \(D = \frac{K \log^2 N}{\epsilon^2} \), \(\Pr[D_{i,jS} < (1 - \epsilon)C_i D/K] \leq e^{-\log^2 N} \). However, since the total number of \(i, jS \) pairs is at most \(N^2 \), union bounding, we get that with high probability, for all pairs \(i, jS \),

\[
(1 - \epsilon)E_{i,jS} \leq \frac{1}{D_{i,jS}} \sum_{d \in D_{i,jS}} \gamma_{d,i}^* \leq (1 + \epsilon)E_{i,jS}
\]

\(\square \)

Finally, we show a short lemma to estimate the number of documents in which a word \(j \) belongs only to the dominating topic.

Lemma 53. Let \(D_{i,jS} \) be the number of documents where \(i \) is dominating, and \(\gamma_{d,i'}^* = 0, \forall i' \in jS \). If the number of documents \(D \geq \frac{\log^2 N}{\epsilon^2} \), then with high probability, for all topics \(i \) and discriminative words \(j \), \(D_{i,jS} \geq D_i(1 - \epsilon)(1 - o(1)) \).
Proof. Since the expected size of $D_{i,j}$ is $(1 - o(1))D_i$, by Chernoff,
\[
\Pr[|D_{i,j}| < (1 - \epsilon)(1 - o(1))D_i] \leq e^{-\frac{\epsilon^2(1 - o(1))D_i}{4}} = e^{-\Omega(\log^2 N)}
\] \hfill (F.3)

Again, since the total number of i,j pairs is at most N^2, union bounding, we get that with high probability, for all pairs i,j, $D_{i,j} \geq D_i(1 - \epsilon)(1 - o(1))$.

\qed

References

