Problem 1:

(a) We use Strassen’s idea as in class. Let X and Y be divided into three groups of $n/3$ size each, or $X = \sum_{i=0}^{2} 2^{in/3}x_i$ and $Y = \sum_{i=0}^{2} 2^{in/3}y_i$. Then, $XY = x_2y_22^{4in/3} + (x_2y_1 + x_1y_2)2^{3n/3} + (x_2y_0 + x_1y_1 + x_0y_2)2^{2n/3} + (x_1y_0 + x_0y_1 + 1)2^{n/3} + x_0y_0$. Now, observe that given x_2y_2, x_1y_1, x_0y_0, $(x_2 + x_1)(y_2 + y_1)$, $(x_2 + x_0)(y_2 + y_0)$, and $(x_1 + x_0)(y_1 + y + 0)$, one can perform all the above multiplications. Example: $(x_2y_1 + x_1y_2) = (x_2 + x_1)(y_2 + y_1) - x_2y_2 - x_1y_1$. Thus, we have $T(n) = 6T(n/3) + O(n)$ and the M.T. tells us that $T = O(n^{\log_2 6})$, which is a little slower than the two-way Strassen multiplication, which is $T = O(n^{\log_2 3})$.

(b) There are many matrix multiplication algorithms out there. Closer to our class, check out the matrix multiplication algorithm by Strassen at http://en.wikipedia.org/wiki/Strassen_algorithm.

(c) This is a classical application of binary search. One just needs to note that for a given position $1 \leq i \leq n$ in the array, if $A[i] > i$ then $\forall j > i$, $A[j] > j$, as the elements are distinct and the array is sorted (w.l.o.g. in ascending order). A similar argument holds whenever $A[i] < i$. The algorithm is then clear, i.e., return if $A[i] = i$ otherwise recurse on the appropriate half. The running time is then $O(\log n)$.

Problem 2: Consider:

$$H_kv = \begin{bmatrix} H_{k-1} & H_{k-1} \\ H_{k-1}^{-1} & -H_{k-1}^{-1} \end{bmatrix} \begin{bmatrix} U \\ L \end{bmatrix} = \begin{bmatrix} H_{k-1}U + H_{k-1}L \\ H_{k-1}^{-1}U - H_{k-1}^{-1}L \end{bmatrix}$$

Thus, to compute H_kv we only need to compute two subproblems $H_{k-1}U$ and $H_{k-1}L$ of size $n/2$ each. Since all basic arithmetic operations on matrix/vector elements take $O(1)$ time, vector additions and subtractions of size n take time $O(n)$. We then have a running time $T(n) = 2T(n/2) + O(n) = O(n \log n)$ by the M.T.

Problem 3: Divide the points S into two sets S_1, S_2 by a vertical line ℓ defined by the median x-coordinate in S. Let $\delta = \min(\delta_1, \delta_2)$, where δ_1 and δ_2 are the closest pair distance of sets S_1 and S_2. Compute δ recursively using sets S_1 and S_2. Note, however, that the closest pair could be points (p, q) such that $p \in S_1$ and $q \in S_2$. We are only interested in those points whose distance is less than δ. This implies that the points p and q should be at most a distance δ from ℓ. Unfortunately, all points could satisfy this condition and thus require a $O(n^2)$ calculation. Fortunately, however, we can exploit the fact that all coordinates are distinct to limit the number of points we need to look at.

Now, note that all points $q \in S_2$ that are within distance δ for a given $p \in S_1$ must lie in a $\delta \times 2\delta$ rectangle. Observe that there can be at most 6 points in that rectangle by the definition of δ. In other words, if there were additional points, then one point cannot be at the extremity and $\delta_2 < \delta$, a contradiction. Therefore, we should perform only $6 \times n/2$ distance comparisons, as in the worst case $n/2$ elements are within distance δ of ℓ.

We proceed as follows. Let P_1 and P_2 be the points within distance δ of ℓ in S_1 and S_2 respectively. Project all points in P_2 onto line ℓ. Then, for a given point $p \in P_1$, pick out at most 6 points whose projection is within δ of p (can you see why?). This can be done by performing a linear search in sorted P_1 and P_2, which can be achieved by sorting S_1 and S_2 as a pre-computation by your favorite $O(n \log n)$ sorting algorithm. Therefore, the recursive procedure takes $T(n) = 2T(n/2) + O(n) = O(n \log n)$ and the total time is thus $O(n \log n)$.
Problem 4: (Extra Credit). As the hint suggests, we compute $AB + BA$ using only squaring as follows. Note that $AB + BA = [A + B]^2 - A^2 - B^2$. Matrix additions takes time $O(n^2)$ and since $T(n) = \Omega(n^2)$, we have that $AB + BA$ can be computed in $O(T(n))$. Now, consider the $2n \times 2n$ matrices

$$A = \begin{bmatrix} 0 & X \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0 & 0 \\ Y & 0 \end{bmatrix}.$$

Then, we have

$$AB + BA = \begin{bmatrix} XY & 0 \\ 0 & YX \end{bmatrix}.$$

Thus XY can be computed in $O(T(n))$ time.