Problem 1: We show that the following greedy strategy is optimal. Given a left endpoint \(l_i \) find the rightmost endpoint \(l_{i+1} \) such that \(\sum_{j=l_i+1}^{l_{i+1}} A[j] \leq W \). The algorithm consists of computing each \(l_i \) for all \(0 \leq i < n \) in increasing order. The running time is clearly linear.

Proof. We prove it by contradiction. Suppose our algorithm finds a partition \(P = \{ p_1, p_2, \ldots, p_{k'} \} \) such that \(k_p < k_L \). Then, there should be an \(1 \leq i < k_p \) s.t. \(p_i > l_i \), otherwise it can be easily seen that \(k_p \geq k_L \). Let \(k \) be the smallest such \(i \). Then,

\[
\sum_{j=p_{k-1}+1}^{p_k} A[j] \geq \sum_{j=l_{k-1}+1}^{l_k+1} A[j] > W,
\]
a contradiction by the definition of \(P \).

Problem 2: Consider the DP solution. We define the recursive function \(P(i, j) \), the minimum cost of partitioning the first \(i \) elements into \(j \) pieces, as follows, \(\forall 1 \leq i \leq n \) and \(\forall 1 \leq j \leq k \):

\[
P(i, j) = \begin{cases} A[1] & \text{if } i = 1, j > 0 \\ \sum_{p=1}^{i} A[p] & \text{if } j = 1, i > 1 \\ \min_{\ell} \max \left(P(\ell, j-1), \sum_{p=\ell+1}^{i} A[p] \right) & \text{o/w} \end{cases}
\]

It can be easily seen that the definition is correct and defines an optimal substructure. We argue that its running time is \(O(kn^2) \).

Observe that to compute each entry \(P(i, j) \), we might sum at most \(n \) elements. If we pre-compute all sums \(A[1] + \cdots + A[b], \forall 1 \leq b \leq n \) then we can answer any query \(A[a] + \cdots + A[b] \) in \(O(1) \) while using \(O(n) \) space in total. Furthermore, recall that finding the minimum takes \(O(n) \). Therefore, the table \(P(i, j) \) with \(nk \) entries can be computed in time \(O(kn^2) \) time. The space usage is clearly \(O(nk) \) as the main table uses \(O(nk) \) entries and the pre-computation uses \(O(n) \).

Problem 3:

Let strings \(S = s_1 \cdots s_n \) and \(T = t_1 \cdots t_n \). To transform \(s_1 \cdots s_i \) into \(t_1 \cdots t_j \), we can:

- put \(t_j \) at the end: \(x \rightarrow s_1 \cdots s_i t_j \) and then transform \(s_1 \cdots s_i \) into \(t_1 \cdots t_{j-1} \)
- delete \(s_i \): \(x \rightarrow s_1 \cdots s_{i-1} t_j \) and then transform \(s_1 \cdots s_{i-1} \) into \(t_1 \cdots t_j \)
- change \(s_i \) into \(t_j \) (if they are different): \(x \rightarrow s_1 \cdots s_{i-1} t_j \) and then transform \(s_1 \cdots s_{i-1} \) into \(t_1 \cdots t_{j-1} \)
- do nothing if \(s_i = t_j \) and then transform \(s_1 \cdots s_{i-1} \) into \(t_1 \cdots t_{j-1} \).

This suggests a recursive scheme where the sub-problems are of the form “how many operations do we need to transform \(s_1 \cdots s_i \) into \(t_1 \cdots t_j \). The DP solution is then to define a \((n+1) \times (n+1) \) matrix \(M \) and fill it so that for every \(0 \leq i, j \leq n \), \(M[i, j] \) is the minimum number of operations to transform \(s_1 \cdots s_i \) into \(t_1 \cdots t_j \). The content of our matrix \(M \) can be formalized recursively as follows:

- \(M[0, j] = j \) because the only way to transform the empty string into \(t_1 \cdots t_j \) is to add the \(j \) characters \(t_1, \cdots, t_j \).
• $M[i, 0] = i$ for similar reasons.

• For $i, j \geq 1$,

\[
M[i, j] = \min \begin{cases}
M[i - 1, j] + 1, \\
M[i, j - 1] + 1, \\
M[i - 1, j - 1] + \text{change}(s_i, t_j)
\end{cases}
\]

where $\text{change}(s_i, t_j) = 1$ if $s_i \neq t_j$ and $\text{change}(s_i, t_j) = 0$ otherwise.

Clearly, the number of changes necessary to transform S into T is in $M[n, n]$. The running time is then $O(n^2)$, as each entry takes $O(1)$ to compute, and the space usage is $O(n^2)$. However, note that each entry $M[i, j]$ depends only on rows j and $j - 1$. Therefore, we only need to keep two rows (overwriting values in the 2-row matrix as needed) to compute $M[n, n]$.

Problem 4:

The naïve algorithm simply try all permutation, but takes exponential time. A better solution is to just sort the items by increasing order of w_i/f_i. We prove it by contradiction. Suppose that $A = \{(w_1, f_1), \ldots, (w_n, f_n)\}$ is a list of minimum cost. Assume there exists a k such that $w_k/f_k > w_{k+1}/f_{k+1}$. Let solution $B = \{(w_1, f_1), \ldots, (w_{k-1}, f_{k-1}), (w_{k+1}, f_{k+1}), (w_k, f_k), (w_{k+2}, f_{k+2}), \ldots, (w_n, f_n)\}$ (the one found by our algorithm). Since A is the minimum solution, we have that $\text{cost}(A) \leq \text{cost}(B)$. Observe that the costs of A and B differ only on the k^{th} and $(k+1)^{th}$ locations. Then, we have:

\[
\text{cost}(A) \leq \text{cost}(B)
\]

\[
f_k \left(\sum_{j \leq k} w_j \right) + f_{k+1} \left(\sum_{j \leq k+1} w_j \right) \leq f_{k+1} \left(\sum_{j \leq k-1} (w_j) + w_{k+1} \right) + f_k \left(\sum_{j \leq k-1} (w_j) + w_{k+1} + w_k \right)
\]

\[
f_{k+1} w_k \leq f_k w_{k+1}
\]

\[
f_k \leq \frac{w_{k+1}}{f_{k+1}}
\]

a contradiction. The running time and space complexity follows directly from your favorite sorting algorithm.