Instance Based Learning

Chapter 8: Instance Based Learning

CS 536: Machine Learning
Littman (Wu, TA)

Instance-Based Learning

Key idea: just store all training examples \(<x_i, f(x_i)> \)

Nearest neighbor:
- Given query instance \(x_q \), first locate nearest training example \(x_n \), then estimate \(\hat{f}(x_q) \leftarrow f(x_n) \)

Problem of noisy labels?

Adding Robustness

\(k \)-Nearest neighbor method:
- Given \(x_q \), take vote among its \(k \) nearest neighbors (if discrete-valued target function)
- take mean of \(f \) values of \(k \) nearest neighbors (if real-valued)
\[
\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^{k} f(x_n)}{k}
\]
When To Consider kNN

- Instances map to points in \mathbb{R}^n
- Fewer than 20 attributes per instance
- Lots of training data

Advantages:
- Training is very fast
- Learn complex target functions
- Don't lose information

Disadvantages:
- Slow at query time
- Easily fooled by irrelevant attributes

Voronoi Diagram

Partition of space by nearness to instances.

Decision Rules

Say $p(x)$ defines probability that instance x will be labeled 1 (positive) versus 0 (negative).

Gibbs Algorithm:
- with probability $p(x)$ predict 1, else 0

Bayes optimal decision rule:
- if $p(x) > .5$ then predict 1, else 0

Note Gibbs has at most twice the expected error of Bayes optimal.

(Look familiar?)

Behavior in the Limit

Nearest neighbor:
- As number of training examples grows, approaches Gibbs Algorithm

k-Nearest neighbor:
- As number of training examples grows and k gets large, approaches Bayes optimal
Distance-Weighted kNN

Might want weight nearer neighbors more heavily...

$$\hat{f}(x_q) \leftarrow \Sigma_{i=1}^k w_i f(x_n) / \Sigma_{i=1}^k w_i$$

where $w_i = 1 / d(x_q, x_i)^2$

and $d(x_q, x_i)$ is distance between x_q and x_i

Note now it makes sense to use all training examples instead of just k

- Shepard's method

Curse of Dimensionality

Imagine instances described by 20 attributes, but only 2 are relevant to target function

Curse of dimensionality: NN is easily misled in high-dimensional space

How do data requirements grow with dimensionality?

Attribute Weighting

One approach:

- Stretch jth axis by weight z_j, where z_1, \ldots, z_n chosen to minimize prediction error
- Use cross-validation to automatically choose weights z_1, \ldots, z_n
- Note setting z_j to zero eliminates this dimension altogether

see Moore and Lee (1994)

Locally Weighted Regression

Note kNN forms local approximation to f for each query point x_q

Why not form an explicit approximation $\hat{f}(x)$ for region surrounding x_q?

- Fit linear function to k nearest neighbors
- Fit quadratic, ...
- Produces “piecewise approximation” to f
What to Minimize

Several choices of error to minimize:

- Squared error over k nearest neighbors
 \[E_1(x_q) = \frac{1}{2} \sum_{x \in kNN(x_q)} (\hat{f}(x) - f(x))^2 \]

- Distance-weighted squared error over all neighbors
 \[E_2(x_q) = \frac{1}{2} \sum_{x \in D} (\hat{f}(x) - f(x))^2 K(d(x_q, x)) \]

Radial Basis Function Nets

- Global approximation to target function, in terms of linear combination of local approximations
- Used, e.g., for image classification
- A different kind of neural network
- Closely related to distance-weighted regression, but “eager” instead of “lazy”

Radial Basis Function Nets

where $a_i(x)$ are the attributes describing instance x, and

\[f(x) = w_0 + \sum_{u=1}^{k} w_u K_u(d(x_u, x)) \]

One common choice is

\[K_u(d(x_u, x)) = e^{-\frac{1}{2\sigma_u^2}d^2(x_u, x)} \]

Training RBF Networks

Q1: What x_u to use for each kernel function $K_u(d(x_u, x))$

- Scatter uniformly throughout instance space
- Or use training instances (reflects instance distribution)

Q2: How to train weights (assume here Gaussian K_u)

- First choose variance (and perhaps mean) for each K_u
 - e.g., use EM
- Then hold K_u fixed, and train linear output layer
 - efficient methods to fit linear function
Case-Based Reasoning
Can apply instance-based learning even when $X \neq \mathbb{R}^n$
- need different “distance” metric

Case-Based Reasoning is instance-based learning applied to instances with symbolic logic descriptions

CBR Example

((user-complaint error53-on-shutdown)
 (cpu-model PowerPC)
 (operating-system Windows)
 (network-connection PCIA)
 (memory 48meg)
 (installed-applications Excel Netscape VirusScan)
 (disk 1gig)
 (likely-cause ????))

CBR in CADET

CADET: 75 stored examples of mechanical devices
- each training example: < qualitative function, mechanical structure >
- new query: desired function,
- target value: mechanical structure for this function
Distance metric: match qualitative function descriptions

CBR in CADET

A stored case: T-junction pipe
- Structure:
 - Q_1, T_j
 - Q_2, T_j
- Function:
 - $Q_1 \rightarrow Q_3$
 - $T_j \rightarrow T_j$

A problem specification: Water faucet
- Structure:
 - Q_1, Q_2
- Function:
 - $Q_1 \rightarrow Q_3$
 - $Q_2 \rightarrow Q_3$
CBR in CADET

- Instances represented by rich structural descriptions
- Multiple cases retrieved (and combined) to form solution to new problem
- Tight coupling between case retrieval and problem solving

Bottom line:
- Simple matching of cases useful for tasks such as answering help-desk queries
- Area of ongoing research

Lazy and Eager Learning

Lazy: wait for query before generalizing
- k-Nearest Neighbor, Case based reasoning

Eager: generalize before seeing query
- Radial basis function networks, ID3, Backpropagation, NaiveBayes, ...

Which is Better?

Does it matter?
- Eager learner must create global approximation
- Lazy learner can create many local approximations
- If they use same H, lazy can represent more complex functions (e.g., consider $H = \text{linear functions}$)