Chapter 5: Evaluating Hypotheses

CS 536: Machine Learning
Littman (Wu, TA)

Two Definitions of Error

The true error of hypothesis h with respect to target function f and distribution D is the probability that h will misclassify an instance drawn at random according to D:

$$\text{error}_D(h) = \Pr_{x \sim D} [f(x) \neq h(x)]$$

$$= E_{x \sim D} [\delta(f(x) \neq h(x))],$$

where $\delta(\phi)$ is 1 if ϕ is true, 0 otherwise.

The sample error of h with respect to target function f and data sample S is the proportion of examples h misclassifies:

$$\text{error}_S(h) = \frac{1}{n} \sum_{x \in S} \delta(f(x) \neq h(x))$$

$$= E_{x \sim S} [\delta(f(x) \neq h(x)].$$

Evaluating Hypotheses

[Read Ch. 5]
[Recommended exercises: 5.2, 5.3, 5.4]

- Sample error, true error
- Confidence intervals for observed hypothesis error
- Estimators
- Binomial distribution, Normal distribution, Central Limit Theorem
- Paired t tests
- Comparing learning methods

Estimation Problem

We have $\text{error}_S(h)$.
We want to know $\text{error}_D(h)$.
How well does $\text{error}_S(h)$ estimate $\text{error}_D(h)$?
Problems Estimating Error

1. **Bias**: If S is training set, $\text{error}_S(h)$ is optimistically biased
 \[\text{bias} = E[\text{error}_S(h)] - \text{error}_D(h) \]
 To ensure an unbiased ($\text{bias} = 0$) estimate, h and S must be chosen independently.
2. **Variance**: Even with unbiased S, $\text{error}_S(h)$ may still vary from $\text{error}_D(h)$.
 To put this another way,
 \[E[\text{error}_S(h)] - \text{error}_S(h) \neq 0. \]

Example

Hypothesis h misclassifies 12 of the 40 examples in S.
$\text{error}_S(h) = 12/40 = 0.3$.
What is $\text{error}_D(h)$?
How sure are you?

Estimators

Experiment:
1. choose sample S of size n according to distribution D
2. measure $\text{error}_S(h)$
 $\text{error}_S(h)$ is a random variable (that is, the result of an experiment)
 $\text{error}_S(h)$ is an unbiased estimator for $\text{error}_D(h)$
Given observed $\text{error}_S(h)$, what can we conclude about $\text{error}_D(h)$?

Confidence Intervals

If
- S contains n examples, drawn independently of h and each other
- $n \geq 30$
Then,
- With approximately 95% probability, $\text{error}_D(h)$ lies in interval
 \[\text{error}_S(h) \pm 1.96 \sqrt{\text{error}_S(h) (1- \text{error}_S(h))/n} \]
Confidence Intervals

General form: If

- \(S \) contains \(n \) examples, drawn independently of \(h \) and each other
- \(n \geq 30 \)

Then

- With approximately \(\% \) probability, \(\text{error}_D(h) \) lies in interval
 \[\text{error}_S(h) \pm z_N \sqrt{\text{error}_S(h) \left(1 - \text{error}_S(h)\right) / n} \]

where \(\% \): 50% 68% 80% 90% 95% 98% 99%
\(z_N \): 0.67 1.00 1.28 1.64 1.96 2.33 2.58

Sample Error is a Random Var.

Rerun the experiment with different randomly drawn \(S \) (of size \(n \))

Probability of observing \(r \) misclassified examples:
\[P(r) = \frac{n!}{r! (n-r)!} \text{error}_D(h)^r (1 - \text{error}_D(h))^{n-r} \]

Binomial Probability Dist.

\[P(r) = \frac{n!}{r! (n-r)!} \text{error}_D(h)^r (1 - \text{error}_D(h))^{n-r} \]

Probability \(P(r) \) of \(r \) heads in \(n \) coin flips, if \(p = \Pr(\text{heads}) \)

- Expected, or mean value of \(X, E[X] \), is
 \[E[X] = \sum_{i=0}^{n} P(i) = np. \]

- Variance of \(X, \sigma_X^2 \) or \(\text{Var}(X) \):
 \[\text{Var}(X) = E[(X - E[X])^2] = np (1-p). \]

- Standard deviation of \(X, \sigma_X \), is
 \[\sigma_X = \sqrt{E[(X - E[X])^2]} = \sqrt{(np (1-p))}. \]

Normal Approximates Binomial

\(\text{error}_S(h) \) follows a Binomial distribution, with

- mean \(\mu_{\text{error}_S(h)} = \text{error}_D(h) \)
- standard deviation \(\sigma_{\text{error}_S(h)} \)
 \[\sigma_{\text{error}_S(h)} = \sqrt{\text{error}_D(h) \left(1 - \text{error}_D(h)\right) / n} \]

Approximate this by a Normal distribution with

- mean \(\mu_{\text{error}_S(h)} = \text{error}_D(h) \)
- standard deviation \(\sigma_{\text{error}_S(h)} \)
 \[\sigma_{\text{error}_S(h)} \approx \sqrt{\text{error}_S(h) \left(1 - \text{error}_S(h)\right) / n} \]
Normal Probability Dist.

\[p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}\right) \]

The probability that \(X \) will fall into the interval \((a, b)\) is given by \(\int_a^b p(x) \, dx \).

- Expected, or mean value of \(X \), \(E[X] = \mu \).
- Variance of \(X \) is \(\text{Var}(X) = \sigma^2 \).
- Standard deviation of \(X \), \(\sigma_X = \sigma \).

Confidence, More Correctly

If

- \(S \) contains \(n \) examples, drawn independently of \(h \) and each other
- \(n \geq 30 \)

Then,

- With approximately 95% probability, \(\text{error}_S(h) \) lies in interval
 \[\text{error}_D(h) + 1.96 \sqrt{\text{error}_D(h) \left(1 - \text{error}_D(h)\right)/n} \]
 equivalently, \(\text{error}_S(h) \) lies in interval
 \[\text{error}_D(h) + 1.96 \sqrt{\text{error}_S(h) \left(1 - \text{error}_D(h)\right)/n} \],
 which is approximately
 \[\text{error}_S(h) + 1.96 \sqrt{\text{error}_S(h) \left(1 - \text{error}_S(h)\right)/n} \)

Central Limit Theorem

Consider a set of independent, identically distributed random variables \(Y_1, \ldots, Y_n \), all governed by an arbitrary probability distribution with mean \(\mu \) and finite variance \(\sigma^2 \). Define the sample mean,

\[\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i. \]

Central Limit Theorem. As \(n \to \infty \), the distribution governing \(\bar{Y} \) approaches a Normal distribution, with mean \(\mu \) and variance \(\sigma^2/n \).
Calculating Conf. Intervals

1. Pick parameter \(p \) to estimate
 - \(error_p(h) \).
2. Choose an estimator
 - \(error_S(h) \).
3. Determine probability distribution that governs estimator
 - \(error_S(h) \) governed by Binomial distribution, approximated by Normal when \(n \geq 30 \).
4. Find interval \((L, U)\) such that \(N\% \) of probability mass falls in the interval
 - Use table of \(z_N \) values

Difference Between Hypotheses

1. Pick parameter to estimate
 \(d = error_p(h_1) - error_p(h_2) \)
2. Choose an estimator
 \(\hat{d} = error_{S_1}(h_1) - error_{S_2}(h_2) \)
3. Determine probability distribution that governs estimator
 \(\alpha_{\hat{d}} \approx \sqrt{[error_{S_1}(h_1) (1 - error_{S_1}(h_1))/n_1 + error_{S_2}(h_2) (1 - error_{S_2}(h_2))/n_2]} \)
4. Find interval \((L, U)\) such that \(N\% \) of probability mass falls in the interval
 \(\hat{d} \pm z_N \sqrt{[error_{S_1}(h_1) (1 - error_{S_1}(h_1))/n_1 + error_{S_2}(h_2) (1 - error_{S_2}(h_2))/n_2]} \)

Paired t Test

Can be used to compare \(h_A, h_B \) as follows.
1. Partition data into \(k \) disjoint test sets \(T_1, T_2, \ldots, T_k \) of equal size, where this size is at least 30.
2. For \(i \) from 1 to \(k \), do
 \(\delta_i = error_{T_i}(h_A) - error_{T_i}(h_B) \)
3. Return the value \(\overline{\delta} \), where
 \(\overline{\delta} = 1/k \sum_{i=1}^{k} \delta_i \)

Confidence

N\% confidence interval estimate for \(d \):
\[
\overline{\delta} \pm t_{N,k-1} s_{\delta}
\]
\[
s_{\delta} = \sqrt{[1/(k(k-1)) \sum_{i=1}^{k} (\delta_i - \overline{\delta})^2]}
\]
Note \(\delta_i \) approximately Normally distributed.
Use Student’s t distribution.
Comparing Learning Algorithms

Want to compare learning algorithms L_A and L_B
What we’d like to estimate:

$$E_{S \sim D} [\text{error}_D(L_A(S)) - \text{error}_D(L_B(S))]$$

where $L(S)$ is the hypothesis output by learner L using training set S.
That is, the expected difference in true error between hypotheses output by
learners L_A and L_B, when trained using randomly selected training sets S drawn
according to distribution D.

An Estimator

But, given limited data D_0, what is a good estimator?

• could partition D_0 into training set S_0 and testing set T_0, and measure

$$\text{error}_{T_0}(L_A(S_0)) - \text{error}_{T_0}(L_B(S_0))$$

• even better, repeat this many times and average the results (next slide)

Using Fixed Data to Compare

1. Partition data D_0 into k (10?) disjoint test sets T_1, T_2, \ldots, T_k of equal size, where this size is at least 30.
2. For i from 1 to k, do
 - use T_i for the test set, and the remaining data for training set S_i
 - $S_i \leftarrow \{D_0 - T_i\}$
 - $\delta_i \leftarrow \text{error}_{T_i}(L_A(S_i)) - \text{error}_{T_i}(L_B(S_i))$
3. Return the value $\bar{\delta}$, where
 $\bar{\delta} = 1/k \sum_{i=1}^{k} \delta_i$.

Statistical Correctness

Notice we’d like to use the paired t test on δ to obtain a confidence interval
But it’s not really correct, because the training sets in this algorithm are not independent (they overlap!)
More correct to view algorithm as producing an estimate of

$$E_{S \sim D_0} [\text{error}_D(L_A(S)) - \text{error}_D(L_B(S))]$$

instead of

$$E_{S \sim D} [\text{error}_D(L_A(S)) - \text{error}_D(L_B(S))],$$
but even this approximation is better than no comparison!