Artificial Neural Networks

[Read Ch. 4]
[Review exercises 4.1, 4.2, 4.5, 4.9, 4.11]
- Threshold units [ok]
- Gradient descent [ok]
- Multilayer networks [ok]
- Backpropagation [ok]
- Hidden layer representations [ok]
- Example: Face Recognition [today]
- Advanced topics [today]

Chapter 4 (Part 3):
Artificial Neural Networks

CS 536: Machine Learning
Littman (Wu, TA)

- Overfitting in ANNs (Ex. 1)
- Overfitting in ANNs (Ex. 2)

Error versus weight updates (example 1)

Error versus weight updates (example 2)

When do you stop training?
Face Recognition

Typical input images

- 90% accurate learning head pose, and recognizing 1-of-20 faces

Learned Weights

For left, str, rght, up

[w0, w1, w2, w3]

http://www.cs.cmu.edu/tom/faces.html

Alternative Error Functions

Penalize large weights:

\[E(w) = \frac{1}{2} \sum_{d \in D} \sum_{k in outputs} (t_{kd} - o_{kd})^2 + \gamma \sum_{ij} w_{ji}^2 \]

Train on target slopes as well as values:

\[E(\bar{w}) = \sum_{d \in D} \sum_{k in outputs} \left((t_{kd} - o_{kd})^2 + \mu \sum_{j in inputs} \left(\frac{\partial t_{kd}}{\partial x_d} - \frac{\partial o_{kd}}{\partial x_d} \right)^2 \right) \]

Tie together weights:

- e.g., in phoneme recognition network
Recurrent Networks

Unfolding: BPTT

Learning Problems

- Need to run a classifier on the ebay data.
 - football vs. all others
 - football vs. woodwind
- Also, describe 3 learning problems
 - what’s the data (features, instances)?
 - what’s the target?
 - how much data is available for training?

Project Methodology

Lots of good ideas for algorithms and domains.
The hard question is: “How will you evaluate it?”
Ultimately, you need to present more than one algorithm (and perhaps more than one problem) and you’ll need some way of saying what worked better.

What’s the gold standard?
Simple Project Idea

Take an interesting dataset
Compare several learning approaches for prediction
• decision trees
• ANNs
• instance-based methods
• SVMs
• boosting

Training/Testing Data

Getting labeled data is hard. Ideas:
• association: use some features to predict others. Example: spelling correction.
• prediction: use past features to predict future.
• existing data: UCI repository
• natural labels: newswire categories
• automatic checker: answer is tricky, but know if you're right.
• artificial data: generator has a known rule

Datasets

Weather prediction data
Sensor data: http://www.greatduckisland.net/
Don Smith has log data on dialup usage
 (use weather, day, time, …)
Other log data: network usage, CPU usage
GPS data (campus buses, my car)
Vision data (score a goal)
Bio data

Text Classification

Easy to get lots of text: web, TREC data, email
Predict topic, authorship, sentiment, style, affect, attitude.
Reinforcement Learning

Personal favorite
Can be challenging to do well: generate data or direct control
• Optimize gas well production
• Object tracking
• “Tag” grid world
• Rover control
• animal behavior experiments
Compare approaches (direct policy search, value function learning, model-based, …)

Active Learning

Take a classic dataset.
Explore the tradeoff between size of training set and generalization.
Devise schemes for choosing items to “pay” for labels to maximize accuracy with minimum cost.

Theory Stuff

Any interest? I’ll introduce instance-based methods next (Ch. 8).