Chapter 4 (Part 2): Artificial Neural Networks

CS 536: Machine Learning
Littman (Wu, TA)

Grading Components

- HWs (not handed in): 0%
- Project paper: 25%
 - document (15%), review (5%), revision (5%)
- Project presentation: 20%
 - oral (10%), slides (10%)
- Midterm (take home): 20%
- Final: 35%

Artificial Neural Networks

[Read Ch. 4]
[Review exercises 4.1, 4.2, 4.5, 4.9, 4.11]

- Threshold units [last time]
- Gradient descent [last time]
- Multilayer networks
- Backpropagation
- Hidden layer representations
- Example: Face Recognition
- Advanced topics
Sigmoid Unit

\[\sigma(x) = \frac{1}{1 + e^{-x}} \]

Derivatives of Sigmoids

Nice property:

\[\frac{d \sigma(x)}{dx} = \sigma(x) (1 - \sigma(x)) \]

We can derive gradient decent rules to train

- One sigmoid unit
- Multilayer networks of sigmoid units → Backpropagation

Error Gradient for Sigmoid

\[
\frac{\partial E}{\partial w_i} = \frac{1}{2} \sum_d (t_d - o_d)^2 \frac{\partial}{\partial w_i} (t_d - o_d)^2
\]

\[
= \frac{1}{2} \sum_d 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d)
\]

\[
= \sum_d (t_d - o_d) (-o_d \frac{\partial}{\partial w_i})
\]

\[
= - \sum_d (t_d - o_d) (o_d \frac{\partial}{\partial \text{net}_d} \text{net}_d \frac{\partial}{\partial w_i})
\]

Even more...

But we know:

\[
\frac{\partial o_d}{\partial \text{net}_d} = \sigma'(\text{net}_d) = o_d (1 - o_d)
\]

\[
\frac{\partial \text{net}_d}{\partial w_i} = \frac{\partial (w \cdot x_d)}{\partial w_i} = x_{i,d}
\]

So:

\[
\frac{\partial E}{\partial w_i} = - \sum_d (t_d - o_d) o_d (1 - o_d) x_{i,d}
\]
Backpropagation Algorithm

Initialize all weights to small random numbers.

Until satisfied, Do

• For each training example, Do
 1. Input the training example to the network and compute the network outputs
 2. For each output unit k
 \[\delta_k = o_k(1 - o_k)(t_k - o_k) \]
 3. For each hidden unit h
 \[\delta_h = o_h(1 - o_h) \sum_{k \text{ in outputs}} w_{h,k} \delta_d \]
 4. Update each network weight $w_{i,j}$
 \[w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j} \]
 where $\Delta w_{i,j} = \eta \delta_j x_{i,j}$

More on Backpropagation

• Gradient descent over entire network weight vector
• Easily generalized to arbitrary directed graphs
• Will find a local, not necessarily global error minimum
 - In practice, often works well (can run multiple times)

More more

• Often include weight momentum α
 \[\Delta w_{i,j}(n) = \eta \delta_j x_{i,j} + \alpha \Delta w_{i,j}(n-1) \]
• Minimizes error over training examples
 - Will it generalize well to subsequent examples?
• Training can take thousands of iterations \(\rightarrow \) slow!
• Using network after training is very fast

Hidden Layer Reps

Simple target function:

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000000</td>
<td>10000000</td>
</tr>
<tr>
<td>01000000</td>
<td>01000000</td>
</tr>
<tr>
<td>00100000</td>
<td>00100000</td>
</tr>
<tr>
<td>00010000</td>
<td>00010000</td>
</tr>
<tr>
<td>00001000</td>
<td>00001000</td>
</tr>
<tr>
<td>00000100</td>
<td>00000100</td>
</tr>
<tr>
<td>00000010</td>
<td>00000010</td>
</tr>
<tr>
<td>00000001</td>
<td>00000001</td>
</tr>
</tbody>
</table>
Autoencoder

Can the mapping be learned with this network??

Hidden Layer Rep.

<table>
<thead>
<tr>
<th>Input</th>
<th>Hidden Values</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000000</td>
<td>.89 .04 .08</td>
<td>10000000</td>
</tr>
<tr>
<td>01000000</td>
<td>.01 .11 .88</td>
<td>01000000</td>
</tr>
<tr>
<td>00100000</td>
<td>.01 .97 .27</td>
<td>00100000</td>
</tr>
<tr>
<td>00010000</td>
<td>.99 .97 .71</td>
<td>00010000</td>
</tr>
<tr>
<td>00001000</td>
<td>.03 .05 .02</td>
<td>00001000</td>
</tr>
<tr>
<td>00000100</td>
<td>.22 .99 .99</td>
<td>00000100</td>
</tr>
<tr>
<td>00000010</td>
<td>.80 .01 .98</td>
<td>00000010</td>
</tr>
<tr>
<td>00000001</td>
<td>.60 .94 .01</td>
<td>00000001</td>
</tr>
</tbody>
</table>

Training

Sum of squared errors for each output unit

Training

Hidden unit encoding for input 01000000
Training

Convergence of Backprop

- Gradient descent to some local minimum
 - Perhaps not global minimum...
 - Add momentum
 - Stochastic gradient descent
 - Train multiple nets with different initial weights

More on Convergence

Nature of convergence
- Initialize weights near zero
- Therefore, initial networks are near-linear
- Increasingly non-linear functions possible as training progresses

Expressiveness of ANNs

Boolean functions:
- Every Boolean function can be represented by network with single hidden layer
- but might require exponential (in number of inputs) hidden units
Real-valued Functions

Continuous functions:
- Every bounded continuous function can be approximated, with arbitrarily small error, by a network with one hidden layer [Cybenko 1989; Hornik et al. 1989]
- Any function can be approximated to arbitrary accuracy by a network with two hidden layers [Cybenko 1988].

Overfitting in ANNs (Ex. 1)

Overfitting in ANNs (Ex. 2)

Face Recognition

Error versus weight updates (example 2)

When do you stop training?

left strt right up

30x32 inputs
Typical input images

- 90% accurate learning head pose, and recognizing 1-of-20 faces

Learned Weights

http://www.cs.cmu.edu/tom/faces.html

Bias first?

Alternative Error Functions

Penalize large weights:

\[E(\mathbf{w}) = \frac{1}{2} \sum_{d \in D} \sum_{k \in \text{outputs}} (t_{kd} - o_{kd})^2 + \gamma \sum_{ij} w_{ji}^2 \]

Train on target slopes as well as values:

\[E(\mathbf{w}) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in \text{outputs}} \left((t_{kd} - o_{kd})^2 + \mu \sum_{j \in \text{inputs}} \left(\frac{\partial t_{kd}}{\partial x_j} - \frac{\partial o_{kd}}{\partial x_j} \right)^2 \right) \]

Tie together weights:
- e.g., in phoneme recognition network

Recurrent Networks
Unfolding: BPTT

\[
\begin{align*}
&y(t + 1) \\
&x(t) \\
&\alpha(t) \\
&y(t) \\
&x(t - 1) \\
&\alpha(t - 1) \\
&y(t - 1) \\
&x(t - 2) \\
&\alpha(t - 2)
\end{align*}
\]