Reconstruction of Walking People Images by Principal Component Analysis

iCML 03
Zhipeng Zhao
The Reconstruction Problem:

- Given a set of walking people images, project them into feature space. Only keep the first k dimensional information and reconstruct these images based on these reduced information.
- If we can find such a good feature space, we can use this feature space to build a good model to represent walking people images.
- My approach:
 - PCA (Principal Component Analysis): Use the principal components of the covariance matrix of the image data to build such a feature space.
PCA (construct feature space)

- Construct featurespace: (eigenspace): given a set of centered vectors (walking people images), \(X_k, k=1,\ldots, M, \) \(X_k \in \mathbb{R}^N \), PCA will diagonalizes the covariance matrix:

\[
C = \frac{1}{M} \sum_{j=1}^{M} X_j X_j^T
\]

- To do this, we need to solve the eigenvalue equation: \(CV = \lambda V \) for eigenvalues \(\lambda \geq 0 \) and \(V \in \mathbb{R}^N \setminus \{0\} \). The eigen vectors \(V \) will be the axes for the feature space. We will order the eigenvectors according to the corresponding eigenvalues. We only need to keep the first \(k \) significant eigenvectors \(V^k \). (Principal Components)
PCA (project to feature space)

- For new image $U \in \mathbb{R}^N$, first center the image, then project it into the feature space:

 $\omega = (V^k)^T (U - \text{mean}(X))$

- The ω vector, which is an N dimensional vector, can be seen as the new image encoding of the image in the feature space.

- Reconstruction:

 $U' = V^k \omega + \text{mean}(X)$
Experiment results:

- Original image:

- Reconstruction from PCA:

 (From left to right, k is increased from 1 to 9)
Experiment result:

- We use the error between the reconstructed image and original image to measure the reconstruction.
- Reconstruction of the testing images:
Experiment Results

- Reconstruction of training images:

![Plot of reconstruction error from training images](image_url)
Conclusion:

- PCA is a good approach to extract features from data and therefore, a good way to build model for walking people’s image.
- PCA is a linear approach, which can not represent the non-linear features in the data. Some improved version of PCA, such as kernel PCA, might be a good complement for it.