
Using TF-IDF to Determine Word Relevance in Document Queries 

Juan Ramos JURAMOS@EDEN.RUTGERS.EDU 
Department of Computer Science, Rutgers University, 23515 BPO Way, Piscataway, NJ, 08855 
 
 

Abstract 
In this paper, we examine the results of applying 
Term Frequency Inverse Document Frequency 
(TF-IDF) to determine what words in a corpus of 
documents might be more favorable to use in a 
query.  As the term implies, TF-IDF calculates 
values for each word in a document through an 
inverse proportion of the frequency of the word 
in a particular document to the percentage of 
documents the word appears in.  Words with 
high TF-IDF numbers imply a strong 
relationship with the document they appear in, 
suggesting that if that word were to appear in a 
query, the document could be of interest to the 
user.  We provide evidence that this simple 
algorithm efficiently categorizes relevant words 
that can enhance query retrieval. 

1.  Introduction 

Before proceeding in depth into our experiments, it is 
useful to describe the nature of the query retrieval 
problem for a corpus of documents and the different 
approaches used to solve it, including TF-IDF. 

1.1  Query Retrieval Problem 

The task of retrieving data from a user-defined query has 
become so common and natural in recent years that some 
might not give it a second thought.  However, this 
growing use of query retrieval warrants continued 
research and enhancements to generate better solutions to 
the problem. 

Informally, query retrieval can be described as the task of 
searching a collection of data, be that text documents, 
databases, networks, etc., for specific instances of that 
data.  First, we will limit ourselves to searching a 
collection of English documents.  The refined problem 
then becomes the task of searching this corpus for 
documents that the query retrieval system considers 
relevant to what the user entered as the query. 

Let us describe this problem more formally.  We have a 
set of documents D, with the user entering a query q = w1, 
w2, �, wn for a sequence of words wi.  Then we wish to 

return a subset D* of D such that for each d є D*, we 
maximize the following probability: 
 

P(d | q, D) (1) 
 

(Berger & Lafferty, 1999).  As the above notation 
suggests, numerous approaches to this problem involve 
probability and statistics, while others propose vector-
based models to enhance the retrieval. 

1.2  Algorithms for Ad-Hoc Retrieval 

Let us briefly examine other approaches used for 
responding to queries.  Intuitively, given the formal 
notation we present for the problem, the use of statistical 
methods has proven both popular and efficient in 
responding to the problem.  (Berger & Lafferty, 1999) for 
example, propose a probabilistic framework that 
incorporates the user�s mindset at the time the query was 
entered to enhance their approximations.  They suggest 
that the user has a specific information need G, which is  
approximated as a sequence of words q in the actual 
query.  By accounting for this noisy transformation of G 
into q and applying Bayes� Law to equation (1), they 
show good results on returning appropriate documents 
given q. 

Vector-based methods for performing query retrieval also 
show good promise.  (Berry, Dumais & O�Brien, 1994) 
suggest performing query retrieval using a popular matrix 
algorithm called Latent Semantic Indexing (LSI).  In 
essence, the algorithm creates a reduced-dimensional 
vector space that captures an n-dimensional representation 
of a set of documents.  When a query is entered, its 
numerical representation is compared the cosine-distance 
of other documents in the document space, and the 
algorithm returns documents where this distance is small.  
The authors� experimental results show that this algorithm 
is highly effective in query retrieval, even when the 
problem entails performing information retrieval over 
documents written in different languages (Littman & 
Keim 1997).  If certain criteria are met, they suggest that 
the LSI approach can be extended to more than two 
languages. 

The procedure we examine with more detail is Term 
Frequency Inverse Document Frequency (TF-IDF).  This 
weighing scheme can be categorized as a statistical 



 

 

procedure, though its immediate results are deterministic 
in nature.  Though TF-IDF is a relatively old weighing 
scheme, it is simple and effective, making it a popular 
starting point for other, more recent algorithms (Salton & 
Buckley, 1988).  In this paper, we will examine the 
behavior of TF-IDF over a set of English documents from 
the LDC�s United Nations Parallel Text Corpus.  The 
purpose of this paper is to examine the behavior, 
strengths, and weaknesses of TF-IDF as a starting point 
for future algorithms. 

2.  An Overview of TF-IDF 

We will now examine the structure and implementation of 
TF-IDF for a set of documents.  We will first introduce 
the mathematical background of the algorithm and 
examine its behavior relative to each variable.  We then 
present the algorithm as we implemented it. 

2.1  Mathematical Framework 

We will give a quick informal explanation of TF-IDF 
before proceeding.  Essentially, TF-IDF works by 
determining the relative frequency of words in a specific 
document compared to the inverse proportion of that word 
over the entire document corpus.  Intuitively, this 
calculation determines how relevant a given word is in a 
particular document.  Words that are common in a single 
or a small group of documents tend to have higher TF-
IDF numbers than common words such as articles and 
prepositions. 

The formal procedure for implementing TF-IDF has some 
minor differences over all its applications, but the overall 
approach works as follows.  Given a document collection 
D, a word w, and an individual document d є D, we 
calculate 
 

wd = fw, d * log (|D|/fw, D)  (2), 
 

where fw, d equals the number of times w appears in d, |D| 
is the size of the corpus, and fw, D equals the number of 
documents in which w appears in D (Salton & Buckley, 
1988, Berger, et al, 2000).  There are a few different 
situation that can occur here for each word, depending on 
the values of  fw, d, |D|, and fw, D, the most prominent of 
which we�ll examine. 

Assume that |D| ~ fw, D, i.e. the size of the corpus is 
approximately equal to the frequency of w over D.  If       
1 < log (|D|/ fw, D) < c for some very small constant c, then 
wd will be smaller than fw, d but still positive.  This implies 
that w is relatively common over the entire corpus but still 
holds some importance throughout D.  For example, this 
could be the case if TF-IDF would examine the word 
�Jesus� over the New Testament.  More relevant to us, this 
result would be expected of the word �United� in the 
corpus of United Nations documents.  This is also the 
case for extremely common words such as articles, 

pronouns, and prepositions, which by themselves hold no 
relevant meaning in a query (unless the user explicitly 
wants documents containing such common words).  Such 
common words thus receive a very low TF-IDF score, 
rendering them essentially negligible in the search. 

Finally, suppose fw, d is large and fw, D is small.  Then      
log (|D|/ fw, D) will be rather large, and so wd will likewise 
be large.  This is the case we�re most interested in, since 
words with high wd imply that w is an important word in d 
but not common in D.  This w term is said to have a large 
discriminatory power. Therefore, when a query contains 
this w, returning a document d where wd is large will very 
likely satisfy the user. 

2.2  Encoding TF-IDF 

The code for TF-IDF is elegant in its simplicity.  Given a 
query q composed of a set of words wi, we calculate wi, d 
for each wi for every document d є D.  In the simplest 
way, this can be done by running through the document 
collection and keeping a running sum of fw, d and fw, D.  
Once done, we can easily calculate wi d according to the 
mathematical framework presented before.  Once all      
wi, d�s are found, we return a set D* containing documents 
d such that we maximize the following equation: 

Σi wi, d (3). 

Either the user or the system can arbitrarily determine the 
size of D* prior to initiating the query.  Also, documents 
are returned in a decreasing order according to equation 
(3). 

This is the traditional method of implementing TF-IDF.  
We will discuss extensions of this algorithm in later 
sections, along with an analysis of TF-IDF according to 
our own results. 

3.  Experiment 

3.1  Data Collection and Formatting 

We tested our TF-IDF implementation on a collection of 
1400 documents from the LDC�s United Nations Parallel 
Text Corpus.  These documents were gathered arbitrarily 
from a larger collection of documents from the UN�s 
1988 database.  The documents were encoded with the 
SGML text format, so we decided to leave in the 
formatting tags to account for noisy data and to test the 
robustness of TF-IDF.  We simulated more noise by 
enforcing case-sensitivity.  Due to certain constraints, we 
had to limit the number of queries used to perform 
information retrieval on to 86.  We calculate TF-IDF 
weights for these queries according to equation (3), and 
then return the first 100 documents that maximize 
equation (3).  The returned documents were returned in 
descending order, with documents with higher weight 
sums appearing first.  To compare our results, we also 
performed in parallel the brute force (and rather naïve) 



 

 

method of performing query retrieval based only on the 
term fw, d.  Naturally, this latter method is intuitively 
flawed for the larger problem of query retrieval, since this 
approach would simply return documents where non-
relevant words appear most (i.e. long documents with 
plenty of articles and prepositions that might not have any 
relevance to the query).  We will provide evidence that 
TF-IDF, though relatively simple, is a big improvement 
over this naïve approach. 

3.2  Experimental Results 

Return Pos. Document # Sum fw, d Sum wd 

1 64 139 1.83 

2 879 136 4.52 

3 1037 121 2.08 

4 324 107 0.91 

5 710 98 7.22 

6 161 93 3.95 

7 1175 87 0.24 

8 402 86 5.13 

Table 1. First eight documents with highest fw, d returned by our 
naïve algorithm for query = �the trafficking of drugs in 
Colombia�.  The high fw, d comes mostly from long documents 
with plenty articles and prepositions.  These documents had very 
low wd scores and are mostly useless to the query. 

As expected, the naïve, brute force approach of simply 
returning documents with high sum of fw, d given each 
query word was very inaccurate.  Of the top eight 
documents shown in Table 1, none are relevant to the 
given query.  This pattern is evident throughout the whole 
list of 344 words, which is summarized in Figure 1. 

Figure 1.  Results of running naïve query retrieval on our data. 
Notice the algorithm does not consider wd, but rather returns 
documents based solely on fw,d.  Relevant documents are 
scattered sporadically, so simply returning the top documents as 
done by this algorithm returns irrelevant documents. 

Let us now consider the results from running TF-IDF on 
our data.  In this case, documents at the top of the list 
have a high sum of wd, so a query containing w would 
likely receive document d as a return value. 

Return Pos. Document # Sum fw, d Sum wd 

1 788 24 28.09 

2 426 72 26.73 

3 881 56 23.96 

4 253 43 19.16 

5 1007 37 16.5 

6 362 29 15.42 

7 520 33 12.34 

8 23 58 10.79 

 Table 2. First eight documents with highest wd returned by TF-
IDF for query = �the trafficking of drugs in Colombia�.  The top 
document, entitled �International Campaign Against Traffic in 
Drugs�, is intuitively relevant to the query. 

As Table 2 shows, retrieval with TF-IDF returned 
documents highly correlate to the given query.  The top 
two documents make frequent use of the non-article 
words in the query; words that are not that frequent in 
other documents.  This gives a high sum of wd, which in 
turn gives a high relevance to the document.  Figure 2 
shows this continuing pattern for our data. 

Figure 2. Results of retrieval with TF-IDF on our data.  High 
values of wd are concentrated on the beginning of the graph, so 
basing query retrieval on the top words here will likely return 
relevant documents.  The two extra graphs indicate upper and 
lower bounds found by the retrieval engine. 

Clearly, TF-IDF is much more powerful than its naïve 
counterpart.  When examining the words in the query, we 
see that TF-IDF can find documents that make frequent 

Naive Query Retrieval

-2

0

2

4

6

8

10

12

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Documents

R
el

ev
an

ce
 to

 Q
ue

ry

Query Results with TF-IDF

0

20

40

60

80

100

120

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Documents

R
el

ev
an

ce
t t

o 
Q

ue
ry



 

 

use of said words and determine if they are relevant in the 
document.  The discriminatory power of TF-IDF allows 
the retrieval engine to quickly find relevant documents 
that are likely to satisfy the user. 

4.  Conclusions 

4.1  Advantages and Limitations 

We have seen that TF-IDF is an efficient and simple 
algorithm for matching words in a query to documents 
that are relevant to that query.  From the data collected, 
we see that TF-IDF returns documents that are highly 
relevant to a particular query.  If a user were to input a 
query for a particular topic, TF-IDF can find documents 
that contain relevant information on the query.  
Furthermore, encoding TF-IDF is straightforward, making 
it ideal for forming the basis for more complicated 
algorithms and query retrieval systems (Berger et al, 
2000). 

Despite its strength, TF-IDF has its limitations.  In terms 
of synonyms, notice that TF-IDF does not make the jump 
to the relationship between words.  Going back to (Berger 
& Lafferty, 1999), if the user wanted to find information 
about, say, the word �priest�, TF-IDF would not consider 
documents that might be relevant to the query but instead 
use the word �reverend�.  In our own experiment, TF-IDF 
could not equate the word �drug� with its plural �drugs�, 
categorizing each instead as separate words and slightly 
decreasing the word�s wd value.  For large document 
collections, this could present an escalating problem. 

4.2  Further Research 

Since TF-IDF is merely a staple benchmark, numerous 
algorithms have surfaced that take the program to the next 
level.  (Berger et al, 2000) propose a number of these in a 
single paper, including a version of TF-IDF that they call 
Adaptive TF-IDF.  This algorithm incorporates 
hillclimbing and gradient descent to enhance 
performance.  They also propose an algorithm for 
performing TF-IDF in a cross-language retrieval setting 
by applying statistical translation to the benchmark TF-
IDF. 

Genetic algorithms have also been used to evolve 
programs that can match or beat TF-IDF schemes.  (Oren, 
2002) employs this method to evolve a large colony of 
individuals.  Using the main ideas of genetic 
programming, mutation, crossover and copying, the 
author of the paper was able to evolve programs that 
performed slightly better than the common TF-IDF 
weighing scheme.  Though the author felt the results were 
not considered significant, the paper shows that there is 
still interest in enhancing the simple TF-IDF scheme. 

Examining our data, the easiest way for us to enhance TF-
IDF would be to disregard case-sensitivity and equate 

words with their lexical derivations and synonyms.  
Future research might also include employing TF-IDF to 
performing searches in documents written in a different 
language than the query.  Enhancing the already powerful 
TF-IDF algorithm would increase the success of query 
retrieval systems, which have quickly risen to become a 
key element of present global information exchange. 

References 

Berger, A & Lafferty, J. (1999).  Information Retrieval as 
Statistical Translation. In Proceedings of the 22nd ACM 
Conference on Research and Development in 
Information Retrieval (SIGIR�99), 222-229. 

Berger, A et al (2000).  Bridging the Lexical Chasm: 
Statistical Approaches to Answer Finding.  In Proc. Int. 
Conf. Research and Development in Information 
Retrieval, 192-199. 

Berry, Michael W. et al. (1995).  Using Linear Algebra 
for Intelligent Information Retrieval.  SIAM Review, 
37(4):177-196. 

Brown, Peter F. et al. (1990).  A Statistical Approach to 
Machine Translation.  In Computational Linguistics 
16(2): 79-85. 

Littman, M., & Keim, G. (1997).  Cross-Language Text 
Retrieval with Three Languages.  In CS-1997-16, Duke 
University. 

Oren, Nir.  (2002). Reexamining tf.idf based information 
retrieval with Genetic Programming.  In Proceedings of 
SAICSIT 2002, 1-10. 

Salton, G. & Buckley, C. (1988). Term-weighing 
approache sin automatic text retrieval.  In Information 
Processing & Management, 24(5): 513-523. 

 

 

 

 


