Instance Based Learning

[Read Ch. 8]

- k-Nearest Neighbor
- Locally weighted regression
- Radial basis functions
- Case-based reasoning
- Lazy and eager learning
Instance-Based Learning

Key idea: just store all training examples $<x_i, f(x_i)>$

Nearest neighbor:
- Given query instance x_q, first locate nearest training example x_n, then estimate $\hat{f}(x_q) ≈ f(x_n)$

Problem of noise?

Adding Robustness

k-Nearest neighbor method:
- Given x_q, take vote among its k nearest neighbors (if discrete-valued target function)
- take mean of f values of k nearest neighbors (if real-valued)

\[\hat{f}(x_q) \approx \frac{\sum_{i=1}^{k} f(x_n)}{k} \]
When To Consider NN

- Instances map to points in \mathbb{R}^n
- Less than 20 attributes per instance
- Lots of training data

Advantages:
- Training is very fast
- Learn complex target functions
- Don't lose information

Disadvantages:
- Slow at query time
- Easily fooled by irrelevant attributes

Voronoi Diagram

Partition of space by nearness to instances.
Decision Rules

Say $p(x)$ defines probability that instance x will be labeled 1 (positive) versus 0 (negative).

Gibbs Algorithm:
- with probability $p(x)$ predict 1, else 0

Bayes optimal decision rule:
- if $p(x) > .5$ then predict 1, else 0

Note Gibbs has at most twice the expected error of Bayes optimal.
(Look familiar?)

Behavior in the Limit

Nearest neighbor:
- As number of training examples grows, approaches Gibbs Algorithm

k–Nearest neighbor:
- As number of training examples grows and k gets large, approaches Bayes optimal
Distance–Weighted kNN

Might want weight nearer neighbors more heavily...

\[
f(x_q) \leftarrow \sum_{i=1}^{k} w_i \cdot f(x_i)
\]

where \(w_i \equiv 1 / d(x_q, x_i)^2 \)

and \(d(x_q, x_i) \) is distance between \(x_q \) and \(x_i \)

Note now it makes sense to use all training examples instead of just \(k \)

- Shepard's method

Curse of Dimensionality

Imagine instances described by 20 attributes, but only 2 are relevant to target function

Curse of dimensionality: NN is easily misled in high-dimensional space

How do data requirements grow with dimensionality?
Attribute Weighting

One approach:
- Stretch jth axis by weight z_j, where z_1, \ldots, z_n chosen to minimize prediction error
- Use cross-validation to automatically choose weights z_1, \ldots, z_n
- Note setting z_j to zero eliminates this dimension altogether

 see [Moore and Lee, 1994]

Locally Weighted Regression

Note kNN forms local approximation to f for each query point x_q

Why not form an explicit approximation $\hat{f}(x)$ for region surrounding x_q?
- Fit linear function to k nearest neighbors
- Fit quadratic, ...
- Produces “piecewise approximation” to f
What to Minimize

Several choices of error to minimize:
- Squared error over k nearest neighbors
 $$E_1(x_q) = 1/2 \sum_{x \in kNN(x_q)} (\hat{f}(x) - f(x))^2$$
- Distance-weighted squared error over all neighbors
 $$E_2(x_q) = 1/2 \sum_{x \in D} (\hat{f}(x) - f(x))^2 K(d(x_q, x))$$

Radial Basis Function Nets

- Global approximation to target function, in terms of linear combination of local approximations
- Used, e.g., for image classification
- A different kind of neural network
- Closely related to distance-weighted regression, but “eager” instead of “lazy”
Radial Basis Function Nets

where \(a_i(x) \) are the attributes describing instance \(x \), and

\[
f(x) = w_0 + \sum_{u=1}^{k} w_u K_u(d(x_u, x))
\]

One common choice is

\[
K_u(d(x_u, x)) = e^{-\frac{1}{2\sigma^2}d^2(x_u, x)}
\]

Training RBF Networks

Q1: What \(x_u \) to use for each kernel function \(K_u(d(x_u, x)) \)
- Scatter uniformly throughout instance space
- Or use training instances (reflects instance distribution)

Q2: How to train weights (assume here Gaussian \(K_u \))
- First choose variance (and perhaps mean) for each \(K_u \)
 - e.g., use EM
- Then hold \(K_u \) fixed, and train linear output layer
 - efficient methods to fit linear function
Case-Based Reasoning

Can apply instance-based learning even when $X \neq X^n$

• need different “distance” metric

Case-Based Reasoning is instance-based learning applied to instances with symbolic logic descriptions

CBR Example

((user-complaint error53-on-shutdown)
 (cpu-model PowerPC)
 (operating-system Windows)
 (network-connection PCIA)
 (memory 48meg)
 (installed-applications Excel Netscape VirusScan)
 (disk 1gig)
 (likely-cause ???))
CBR in CADET

CADET: 75 stored examples of mechanical devices
• each training example: < qualitative function, mechanical structure >
• new query: desired function,
• target value: mechanical structure for this function

Distance metric: match qualitative function descriptions
CBR in CADET

- Instances represented by rich structural descriptions
- Multiple cases retrieved (and combined) to form solution to new problem
- Tight coupling between case retrieval and problem solving

Bottom line:
- Simple matching of cases useful for tasks such as answering help-desk queries
- Area of ongoing research

Lazy and Eager Learning

Lazy: wait for query before generalizing
- \(k \)-Nearest Neighbor, Case based reasoning

Eager: generalize before seeing query
- Radial basis function networks, ID3, Backpropagation, NaiveBayes, ...
Which is Better?

Does it matter?

- Eager learner must create global approximation
- Lazy learner can create many local approximations
- If they use same H, lazy can represent more complex functions (e.g., consider $H = \text{linear functions}$)