Chapter 7: Computational Learning Theory

CS 536: Machine Learning
Littman (Wu, TA)

Administration

Bring questions Wednesday.
Midterm will be distributed after you’re satisfied.
Computational Learning Theory

[Read Chapter 7]
[Suggested exercises: 7.1, 7.2, 7.5, 7.8]

- Computational learning theory
- 1: learner poses queries to teacher
- 2: teacher chooses examples
- 3: randomly generated instances
- PAC learning
- Vapnik–Chervonenkis Dimension
- Mistake bounds

COLT

What general laws constrain inductive learning?

We seek theory to relate:

- Probability of successful learning
- Number of training examples
- Complexity of hypothesis space
- Accuracy to which target concept is approximated
- Manner in which training examples presented
Prototypical Learning Task

- **Given** (for concept learning):
 - Instances X: Possible days, each described by the attributes Sky, $AirTemp$, $Humidity$, $Wind$, $Water$, $Forecast$
 - Target function c: $EnjoySport$: $X \rightarrow \{0, 1\}$
 - Training examples S: Positive and negative examples of the target function
 $<x_1, c(x_1)>, \ldots <x_m, c(x_m)>$

Prototypical Learning Task

- **Determine**:
 - A hypothesis h in H such that $h(x) = c(x)$ for all x in S?
 - A hypothesis h in H such that $h(x) = c(x)$ for all x in X?
Sample Complexity

How many training examples are sufficient to learn the target concept?

1. If learner proposes instances as queries to teacher
 • Learner proposes x, teacher provides $c(x)$

2. If teacher (who knows c) provides training examples
 • teacher provides example sequence $<x, c(x)>$

3. If some random process (e.g., nature) proposes instances
 • x generated randomly, teacher provides $c(x)$

Sample Complexity: 1

Learner proposes instance x, teacher provides $c(x)$ (assume c is known to be in learner’s hypothesis space H)

Optimal query strategy: play 20 questions
• pick instance x such that half of hypotheses in VS classify x positive, half classify x negative
• When this is possible, need $\log_2 |H|$ queries to learn c
• when not possible, need even more
Sample Complexity: 2

Teacher (who knows \(c \)) provides training examples (assume \(c \) is in learner's hypothesis space \(H \))

Optimal teaching strategy: depends on \(H \) used by learner

Consider the case \(H = \) conjunctions of up to \(n \) Boolean literals and their negations

ex., \((\text{AirTemp} = \text{Warm}) \land (\text{Wind} = \text{Strong})\),

where \(\text{AirTemp}, \text{Wind}, \ldots \) each have 2 possible values.

- if \(n \) possible Boolean attributes in \(H \), \(n+1 \) examples suffice. Why?

Sample Complexity: 3

Given:

- set of instances \(X \)
- set of hypotheses \(H \)
- set of possible target concepts \(C \)
- training instances generated by a fixed, unknown probability distribution \(D \) over \(X \)
Sample Complexity: 3

Learner observes a sequence D of training examples of form $<x, c(x)>$, for some target concept c in C

- instances x are drawn from distribution D
- teacher provides target values $c(x)$

Learner must output a hypothesis h estimating c

- h is evaluated by its performance on subsequent instances drawn from D

Note: randomly drawn instances, noise–free classifications

True Error of a Hypothesis

Instance space X

Definition: The **true error** (denoted $error_D(h)$) of hypothesis h with respect to target concept c and distribution D is the probability that h will misclassify an instance drawn at random via D.

$error_D(h) = \Pr_{x \in D}[c(x) \neq h(x)]$
Two Notions of Error

Training error of hypothesis h with respect to target concept c
- How often $h(x) \neq c(x)$ over training instances S

True error of hypothesis h with respect to c
- How often $h(x) \neq c(x)$ over future random instances drawn from D

Our concern:
- Can we bound the true error of h given the training error of h?
- First consider when training error of h is zero (i.e., h in $VS_{H,S}$)

Exhausting the Version Space

Definition: The version space $VS_{H,S}$ is said to be *exhausted* with respect to c and S, if every hypothesis h in $VS_{H,S}$ has error less than \bar{r} with respect to c and S.

$(\not\exists h \in VS_{H,S}) \text{ error}_D(h) < \bar{r}$
Examples Needed?

Theorem: [Haussler, 1988]. If the hypothesis space H is finite, and S is a sequence of $m \geq 1$ independent random examples of some target concept c, then for any $0 \leq \varepsilon \leq 1$, the probability that the version space with respect to H and S is not ε-exhausted (with respect to c) is less than $|H| e^{-\varepsilon m}$.

Implications

Interesting! This bounds the probability that any consistent learner will output a hypothesis h with $\text{error}(h) \geq \varepsilon$. If we want to this probability to be below δ, $|H| e^{-\varepsilon m} \leq \delta$, then

$$m \geq 1/\delta (\ln |H| + \ln(1/\delta)).$$
Conjunctions of Literals

How many examples are sufficient to assure with probability at least \((1-d)\) that every \(h\) in \(VS_{H,S}\) satisfies \(error_D(h)\)?

Use our theorem: \(m \geq \frac{1}{\ln(n)}(\ln|H| + \ln(1/d))\).

Suppose \(H\) contains conjunctions of constraints on up to \(n\) Boolean attributes (literals). Then \(|H| = 3^n\), and

\[
m \geq \frac{1}{\ln(3^n + \ln(1/d))}, \quad \text{or}
\]

\[
m \geq \frac{1}{\ln(3n + \ln(1/d))}.
\]

How About \(EnjoySport\)?

\[
m \geq \frac{1}{\ln(n)}(\ln|H| + \ln(1/d)).
\]

If \(H\) is as given in \(EnjoySport\) then \(|H| = 973\), and \(m \geq \frac{1}{\ln(973 + \ln(1/d))}\).

... if want to assure that with probability 95%, \(VS\) contains only hypotheses with \(error_D(h) \leq .1\), then it is sufficient to have \(m\) examples, where

\[
m \geq \frac{1}{\ln(973 + \ln(1/0.05))}
\]

\[
= 10(\ln 973 + \ln 20) = 10(6.88 + 3.00)
\]

\[
= 98.8
\]
PAC Learning

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is PAC-learnable by L using H if for all c in C, distributions D over X, δ such that $0 < \delta < 1/2$, and ϵ such that $0 < \epsilon < 1/2$, learner L will with probability at least $(1 - \delta)$ output a hypothesis h in H such that $error_D(h) \leq \epsilon$, in time polynomial in $1/\delta$, $1/\epsilon$, n and $\text{size}(c)$.

Agnostic Learning

So far, assumed c in H

Agnostic learning setting: don't assume c in H

• What do we want then?
 – The hypothesis h that makes fewest errors on training data
• What is sample complexity in this case?
 $$m \geq \frac{1}{(2\epsilon^2)} \left(\ln |H| + \ln(1/\delta) \right).$$

derived from Hoeffding (Chernoff) bounds:
 $$\Pr[error_D(h) > error_S(h) + \delta] \leq \exp(-2m\epsilon^2).$$
Shattering a Set

Definition: a dichotomy of a set S is a partition of S into two disjoint subsets.

Definition: a set of instances S is shattered by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy.

The instances can be classified in every possible way.

Three Instances Shattered
The VC Dimension

Definition: The Vapnik–Chervonenkis dimension, \(VC(H) \), of hypothesis space \(H \) defined over instance space \(X \) is the size of the largest finite subset of \(X \) shattered by \(H \). If arbitrarily large (but finite) sets of \(X \) can be shattered by \(H \), then \(VC(H) \equiv \infty \).

VC Dim. of Linear Decision Surfaces

![Graphical representation of linear decision surfaces](image)

Is the VC dimension at least 3?
Sample Complexity and VC Dim.

How many randomly drawn examples suffice to ε-exhaust $\text{VS}_{H,S}$ with probability at least $(1-\delta)$?

$$m \geq \frac{1}{\delta} (8 \text{ VC}(H) \log_2 (\frac{13}{\delta}) + 4 \log_2 (\frac{2}{\delta})).$$

The VC dimension plays an analogous role to $\ln |H|$.

Mistake Bounds

So far: how many examples needed to learn?
What about: how many mistakes before convergence?
Let's consider similar setting to PAC learning:
- Instances drawn at random from X according to distribution D
- Learner must classify each instance before receiving correct classification from teacher
- Can we bound the number of mistakes learner makes before converging?
Mistake Bounds: Find–S

Consider Find–S when \(H = \) conjunction of boolean literals

FIND–S:
- Initialize \(h \) to most specific hypothesis
 \[l_1 \land \neg l_1 \land l_2 \land \neg l_2 \land \ldots \land l_n \land \neg l_n \]
- For each positive training instance \(x \)
 - Remove from \(h \) any literal that is not satisfied by \(x \)
- Output hypothesis \(h \).

How many mistakes before converging to correct \(h \)?

Halving Algorithm

Consider the Halving Algorithm:
- Learn concept using version space **CANDIDATE–ELIMINATION** algorithm
- Classify new instances by majority vote of version space members

How many mistakes before converging to correct \(h \)?
- ... in worst case?
- ... in best case?
Optimal Mistake Bounds

Let $M_A(C)$ be the max number of mistakes made by algorithm A to learn concepts in C. (Maximum is over all possible c in C, and all possible training sequences)

$$M_A(C) = \max_{c \in C} M_A(c)$$

All Together Now

Definition: Let C be an arbitrary non-empty concept class. The optimal mistake bound for C, denoted $Opt(C)$, is the minimum over all possible learning algorithms A of $M_A(C)$.

$$Opt(C) = \min_{\text{learning algorithms } A} M_A(C).$$

$$VC(C) \leq Opt(C) \leq M_{\text{Halving}}(C) \leq \log_2(|C|).$$