Chapter 13: Reinforcement Learning

CS 536: Machine Learning
Littman (Wu, TA)

Administration

Midterms due
Reinforcement Learning

[Read Chapter 13]

• [Exercises 13.1, 13.2, 13.4]
• Control learning
• Control policies that choose optimal actions
• Q learning
• Convergence

Control Learning

Consider learning to choose actions, e.g.,

• Robot learning to dock on battery charger
• Learning to choose actions to optimize factory output
• Learning to play Backgammon
Problem Characteristics

Note several problem characteristics:
• Delayed reward
• Opportunity for active exploration
• Possibility that state only partially observable
• Possible need to learn multiple tasks with same sensors/effectors

One Example: TD-Gammon

[Tesauro, 1995]
Learn to play Backgammon
Immediate reward
• +100 if win
• -100 if lose
• 0 for all other states
Trained by playing 1.5 million games against itself
Now approximately equal to best human player
The RL Problem

Goal: Learn to choose actions that maximize
\[r_0 + \gamma r_1 + \gamma^2 r_2 + \ldots , \text{ where } 0 \leq \gamma < 1 \]

Markov Decision Processes

Assume
- finite set of states \(S \); set of actions \(A \)
- at each discrete time agent observes state \(s_t \) in \(S \) and chooses action \(a_t \) in \(A \)
- then receives immediate reward \(r_t \) & state changes to \(s_{t+1} \)
- Markov assumption:
 - \(r_t = r(s_t, a_t) \) and \(s_{t+1} = \Delta(s_t, a_t) \) depend only on current state and action
 - \(\Delta \) and \(r \) may be nondeterministic
 - \(\Delta \) and \(r \) not necessarily known to agent
Agent's Learning Task

Execute actions in environment, observe results, and

- learn action policy \(\pi : S \rightarrow A \) that maximizes
 \[
 E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots]
 \]
 from any starting state in \(S \)
- here \(0 \leq \gamma < 1 \) is the discount factor for future rewards

Different Learning Problem

Note something new:

- Target function is \(\pi : S \rightarrow A \)
- but we have no training examples of form \(<s, a> \)
- training examples are of form \(<<<s, a>, r> \)
Value Function

To begin, consider deterministic worlds...
For each possible policy the agent might adopt, we can define an evaluation function over states

\[V^\pi(s) = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots = \sum_{i=0}^{\infty} \gamma^i r_{t+i} \]

where \(r_t, r_{t+1}, \ldots \) are generated by following policy starting at state \(s \)

Restated, the task is to learn the optimal policy:

\[\pi^* = \arg\max_{\pi} V^\pi(s), (\pi,s) \]

Example MDP

- \(r(s, a) \) (immediate reward) values
- \(Q(s, a) \) values
- \(V^*(s) \) values
- One optimal policy
What to Learn

We might try to have agent learn the evaluation function V^* (we write as V^*)

It could then do a lookahead search to choose best action from any state s because

$$V^*(s) = \arg\max_a [r(s, a) + V^*(d(s, a))]$$

A problem:

- This works well if agent knows $\mathcal{S} \subseteq \mathcal{A} \subseteq \mathcal{S}$, and $r: \mathcal{S} \times \mathcal{A} \to \mathcal{R}$
- But when it doesn't, it can't choose actions this way

Q Function

Define new function very similar to V^*

$$Q(s, a) \equiv r(s, a) + V^*(d(s, a))]$$

If agent learns Q, it can choose optimal action even without knowing d!

$$V^*(s) = \arg\max_a [r(s, a) + V^*(d(s, a))]$$

$$V^*(s) = \arg\max_a Q(s, a)$$

Q is the evaluation function the agent will learn
Training Rule to Learn Q

Note Q and V^* closely related:

$$V^*(s) = \max_{a'} Q(s, a')$$

Which allows us to write Q recursively as

$$Q(s_t, a_t) = r(s_t, a_t) + \gamma V^*(d(s_t, a_t))$$

$$= r(s_t, a_t) + \gamma \max_{a'} Q(s_{t+1}, a')$$

Nice! Let \hat{Q} denote learner’s current approximation to Q. Use training rule

$$\hat{Q}(s, a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s', a')$$

where s' is the state resulting from applying action a in state s.

Q Learning in Deterministic Case

For each s, a initialize table entry

$$\hat{Q}(s, a) \leftarrow 0$$

Observe current state s

Do forever:

- Select an action a and execute it
- Receive immediate reward r
- Observe the new state s'
- Update the table entry for $\hat{Q}(s, a)$ via:
 $$\hat{Q}(s, a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s', a')$$
- $s \leftarrow s'$
Updating \hat{Q}

\[\hat{Q}(s_1, a_{\text{right}}) = r + 0.9 \max_a \hat{Q}(s_2, a) \]
\[= 0 + 0.9 \max \{63, 81, 100\} = 90 \]

notice if rewards non-negative, then
\[(s, a, n) \hat{Q}_{n+1}(s, a) \geq \hat{Q}_n(s, a) \]
and
\[(s, a, n) 0 \leq \hat{Q}_n(s, a) \leq Q(s, a) \]

Convergence Proof

\hat{Q} converges to Q. Consider case of deterministic world where see each $<s, a>$ visited infinitely often.

Proof: Define a full interval to be an interval during which each $<s, a>$ is visited.
During each full interval the largest error in \hat{Q} table is reduced by factor of \[. \]
Let \hat{Q}_n be table after n updates, and n be the maximum error in \hat{Q}_n; that is
\[\square_n = \max_{s,a} |\hat{Q}_n(s, a) - Q(s, a)| \]
Proof Continued

For table entry $\hat{Q}_n(s, a)$ updated on iteration $n + 1$, the error in the revised estimate $\hat{Q}_{n+1}(s, a)$ is

$$|\hat{Q}_{n+1}(s, a) - Q(s, a)|$$

$$= |(r + \max_a \hat{Q}_n(s', a')) - (r + \max_a Q(s', a'))|$$

$$= \max_a |\hat{Q}_n(s', a') - Q(s', a')|$$

$$\leq \max_a |\hat{Q}_n(s', a') - Q(s', a')|$$

$$\leq \max_{a', s''} |\hat{Q}_n(s'', a') - Q(s'', a')|$$

$$|\hat{Q}_{n+1}(s, a) - Q(s, a)| \leq \bar{D}_n$$

Note that we used the fact that

$$|\max_a f_1(a) - \max_a f_2(a)| \leq \max_a |f_1(a) - f_2(a)|$$

Nondeterministic Case

What if reward and next state are non–deterministic?

We redefine V, Q by taking expected values

$$V^\pi(s) = E[r_t + \boxplus r_{t+1} + \boxplus^2 r_{t+2} + \ldots]$$

$$= E[\sum_{i=0}^{\infty} \boxplus r_{t+i}]$$

$$Q(s, a) = E[r(s, a) + \boxplus V^\pi(s, a)]$$
Nondeterministic Case

Q learning generalizes to nondeterministic worlds

Alter training rule to

$$\hat{Q}_n(s, a) = (1-\frac{1}{visits_n(s, a)})Q_{n-1}(s, a) + \frac{1}{visits_n(s, a)} [r + \max_a Q_{n-1}(s', a')]$$

where

$$\frac{1}{visits_n(s, a)} = 1/(1 + visits_n(s, a))$$

Can still prove convergence of \hat{Q} to Q [Watkins and Dayan, 1992].

Temporal Difference Learning

Q learning: reduce discrepancy between successive Q estimates

One step time difference:

$$Q^{(1)}(s_t, a_t) = r_t + \max_a Q(s_{t+1}, a)$$

Why not 2 steps?

$$Q^{(2)}(s_t, a_t) = r_t + \max_a Q(s_{t+1}, a)$$

Or n?

$$Q^{(n)}(s_t, a_t) = r_t + \max_a Q(s_{t+n}, a)$$

Blend all of these:

$$Q(s_t, a_t) = (1-\frac{1}{\lambda}) [Q^{(1)}(s_t, a_t) + \frac{1}{\lambda}Q^{(2)}(s_t, a_t) + ...]$$
Temporal Difference Learning

\[Q(s_t, a_t) = (1-l)(Q(s_t, a_t) + lQ(s_{t+1}, a_{t+1})) \]

Equivalent expression:

\[Q(s_t, a_t) = r_t + l[(1-l)\max_a \hat{Q}(s_t, a_t) + l\hat{Q}(s_{t+1}, a_{t+1})] \]

TD(l) algorithm uses above training rule

- Sometimes converges faster than \(Q \) learning (not understood in control case)
- Converges for learning \(V \) for any \(0 \leq l \leq 1 \) (Dayan, 1992)
- Tesauro's TD–Gammon uses this algorithm to estimate the value function via self play.

Subtleties & Ongoing Research

- Replace \(\hat{Q} \) table with neural net or other generalizer
- Handle case where state only partially observable
- Design optimal exploration strategies
- Extend to continuous action, state
- Learn and use \(\hat{S}A\hat{S} \)
- Relationship to dynamic programming and heuristic search