The Boosting Approach to Machine Learning

Rob Schapire
Princeton University

www.cs.princeton.edu/~schapire
Example: Spam Filtering

- **Problem**: filter out spam (junk email)

- **Gather large collection of examples of spam and non-spam**:
 - From: yoav@att.com Rob, can you review a paper... non-spam
 - From: xa412@hotmail.com Earn money without working!!!! ... spam

- **Main observation**:
 - Easy to find “rules of thumb” that are “often” correct
 - *If ‘buy now’ occurs in message, then predict ‘spam’*
 - Hard to find single rule that is very highly accurate
The Boosting Approach

- devise computer program for deriving rough rules of thumb
- apply procedure to subset of emails
- obtain rule of thumb
- apply to 2nd subset of emails
- obtain 2nd rule of thumb
- repeat T times
Details

- how to **choose examples** on each round?
 - concentrate on “hardest” examples
 (those most often misclassified by previous rules of thumb)

- how to **combine** rules of thumb into single prediction rule?
 - take (weighted) majority vote of rules of thumb
Boosting

• **boosting** = general method of converting rough rules of thumb into highly accurate prediction rule

• more technically:
 • given “weak” learning algorithm that can consistently find classifier with error \(\leq 1/2 - \gamma \)
 • a boosting algorithm can **provably** construct single classifier with error \(\leq \epsilon \)

 \((\epsilon, \gamma \text{ small}) \)
This Talk

- introduction to AdaBoost
- analysis of training error
- analysis of generalization error based on theory of margins
- applications, experiments and extensions
Background

- [Valiant ’84]:
 - introduced theoretical ("PAC") model for studying machine learning
- [Kearns & Valiant ’88]:
 - open problem of finding a boosting algorithm
- [Schapire ’89], [Freund ’90]:
 - first polynomial-time boosting algorithms
- [Drucker, Schapire & Simard ’92]:
 - first experiments using boosting
Background (cont.)

• [Freund & Schapire ’95]:
 • introduced “AdaBoost” algorithm
 • strong practical advantages over previous boosting algorithms

• experiments and applications using AdaBoost:

 [Drucker & Cortes ’96] [Schapire, Singer & Singhal ’98] [Iyer, Lewis, Schapire, Singer & Singhal ’00]
 [Jackson & Craven ’96] [Abney, Schapire & Singer ’99] [Onoda, Rätsch & Müller ’00]
 [Freund & Schapire ’96] [Haruno, Shirai & Ooyama ’99] [Tieu & Viola ’00]
 [Quinlan ’96] [Cohen & Singer’ 99] [Walker, Rambow & Rogati ’01]
 [Breiman ’96] [Dietterich ’00] [Rochery, Schapire, Rahim & Gupta ’01]
 [Maclin & Opitz ’97] [Schapire & Singer ’00] [Merler, Furlanello, Larcher & Sboner ’01]
 [Bauer & Kohavi ’97] [Collins ’00] :
 [Schwenk & Bengio ’98] [Escudero, Márquez & Rigau ’00]

• continuing development of theory and algorithms:

 [Schapire, Freund, Bartlett & Lee ’98] [Duffy & Helmbold ’99, ’02] [Friedman ’01]
 [Grove & Schuurmans ’98] [Freund & Mason ’99] [Koltchinskii, Panchenko & Lozano ’01]
 [Mason, Bartlett & Baxter ’98] [Ridgeway, Madigan & Richardson ’99] [Collins, Schapire & Singer ’02]
 [Schapire & Singer ’99] [Kivinen & Warmuth ’99] [Demiriz, Bennett & Shawe-Taylor ’02]
 [Cohen & Singer ’99] [Friedman, Hastie & Tibshirani ’00] [Lebanon & Lafferty ’02]
 [Freund & Mason ’99] [Rätsch, Onoda & Müller ’00] :
 [Domingo & Watanabe ’99] [Rätsch, Warmuth, Mika, Onoda, Lemm & Müller ’00] :

 ...
A Formal Description of Boosting

- given training set \((x_1, y_1), \ldots, (x_m, y_m)\)
- \(y_i \in \{-1, +1\}\) correct label of instance \(x_i \in X\)
- for \(t = 1, \ldots, T\):
 - construct distribution \(D_t\) on \([1, \ldots, m]\)
 - find weak classifier ("rule of thumb")
 \[h_t : X \rightarrow \{-1, +1\} \]
 with small error \(\epsilon_t\) on \(D_t\):
 \[\epsilon_t = \Pr_{D_t}[h_t(x_i) \neq y_i] \]
 - output final classifier \(H_{\text{final}}\)
AdaBoost

• constructing D_t:
 - $D_1(i) = 1/m$
 - given D_t and h_t:

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases}$$

$$= \frac{D_t(i)}{Z_t} \exp(-\alpha_t y_i h_t(x_i))$$

where $Z_t = \text{normalization constant}$

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) > 0$$

• final classifier:
 - $H_{\text{final}}(x) = \text{sign} \left(\sum_t \alpha_t h_t(x) \right)$
Toy Example

\[D_1 \]

weak classifiers = vertical or horizontal half-planes
Round 1

\[h_1 \]

\[\varepsilon_1 = 0.30 \]
\[\alpha_1 = 0.42 \]
Round 2

\[\varepsilon_2 = 0.21 \]
\[\alpha_2 = 0.65 \]
Round 3

\[\varepsilon_3 = 0.14 \]

\[\alpha_3 = 0.92 \]
\[H_{\text{final}} = \text{sign} \left(\begin{array}{c}
0.42 \\
+ 0.65 \\
+ 0.92 \\
\end{array} \right) \]
Analyzing the Training Error

- **Theorem:**
 - write ϵ_t as $1/2 - \gamma_t$
 - then
 \[
 \text{training error}(H_{\text{final}}) \leq \exp\left(-2\sum_t \gamma_t^2\right)
 \]

- so: if $\forall t : \gamma_t \geq \gamma > 0$
 - then $\text{training error}(H_{\text{final}}) \leq e^{-2\gamma^2T}$

- **AdaBoost is adaptive:**
 - does not need to know γ or T a priori
 - can exploit $\gamma_t \gg \gamma$
Proof Intuition

- on round t:
 increase weight of examples incorrectly classified by h_t
- if x_i incorrectly classified by H_{final}
 then x_i incorrectly classified by (weighted) majority of h_t’s

\[herefore \text{if } x_i \text{ incorrectly classified by } H_{\text{final}} \]
then x_i must have “large” weight under final distribution D_{T+1}

\[\therefore \text{number of incorrectly classified examples “small” (since total weight } \leq 1) \]
Proof

\textbf{Step 1}: unwrapping recurrence:

\[DT_{T+1}(i) = \frac{1}{m} \exp\left(-y_if(x_i)\right) \prod_t Z_t \]

where \(f(x) = \sum_t \alpha_t h_t(x) \)

\textbf{Step 2}: training error\((H_{\text{final}}) = \frac{1}{m} \sum_i \begin{cases} 1 & \text{if } y_i \neq H_{\text{final}}(x_i) \\ 0 & \text{else} \end{cases} \]

\[= \frac{1}{m} \sum_i \begin{cases} 1 & \text{if } y_if(x_i) \leq 0 \\ 0 & \text{else} \end{cases} \]

\[\leq \frac{1}{m} \sum_i \exp(-y_if(x_i)) \]

\[= \sum_i DT_{T+1}(i)\prod_t Z_t \]

\[= \prod_t Z_t \]

\textbf{Step 3}: \(Z_t = 2\sqrt{\epsilon_t(1 - \epsilon_t)} = \sqrt{1 - 4\gamma_t^2} \leq e^{-2\gamma_t^2} \)
expect:

- training error to continue to drop (or reach zero)
- test error to increase when H_{final} becomes “too complex”
 - “Occam’s razor”
 - overfitting
- hard to know when to stop training
Actual Typical Run

- Test error does not increase, even after 1000 rounds.
 - (Total size > 2,000,000 nodes)
- Test error continues to drop even after training error is zero!

<table>
<thead>
<tr>
<th># rounds</th>
<th>5</th>
<th>100</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train error</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Test error</td>
<td>8.4</td>
<td>3.3</td>
<td>3.1</td>
</tr>
</tbody>
</table>

- Occam’s razor wrongly predicts “simpler” rule is better.
A Better Story: Theory of Margins

[with Freund, Bartlett & Lee]

• key idea:
 • training error only measures whether classifications are right or wrong
 • should also consider confidence of classifications

• can write: \(H_{\text{final}}(x) = \text{sign}(f(x)) \)

where \(f(x) = \frac{\sum_t \alpha_t h_t(x)}{\sum_t \alpha_t} \in [-1, +1] \)

• define margin of example \((x, y)\) to be \(y f(x) \)
 = measure of confidence of classifications

\[
\text{high conf. incorrect} \quad \text{low conf.} \quad \text{high conf. correct}
\]

\[-1 \quad H_{\text{final}} \quad 0 \quad H_{\text{final}} \quad +1\]

incorrect \quad correct

Empirical Evidence: The Margin Distribution

- margin distribution
 = cumulative distribution of margins of training examples

![Graph showing margin distribution with error on the y-axis and number of rounds (T) on the x-axis.](image)

<table>
<thead>
<tr>
<th># rounds</th>
<th>5</th>
<th>100</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>train error</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>test error</td>
<td>8.4</td>
<td>3.3</td>
<td>3.1</td>
</tr>
<tr>
<td>% margins ≤ 0.5</td>
<td>7.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>minimum margin</td>
<td>0.14</td>
<td>0.52</td>
<td>0.55</td>
</tr>
</tbody>
</table>
Theoretical Evidence: Analyzing Boosting Using Margins

- if all training examples have large margins, then can approximate final classifier by a much smaller classifier
 - (similar to how polls can predict outcome of a not-too-close election)
- can use this to prove that larger margins \Rightarrow better test error, regardless of number of weak classifiers
- can also prove that boosting tends to increase margins of training examples by concentrating on those with smallest margin
- so:
 although final classifier is getting larger, margins are likely to be increasing, so final classifier is actually getting close to a simpler classifier, driving down the test error
Practical Advantages of AdaBoost

- **fast**
- **simple** and easy to program
- **no parameters** to tune (except T)
- **flexible** — can combine with any learning algorithm
- **no prior knowledge** needed about weak learner
- **provably effective**, provided can consistently find rough rules of thumb
 - shift in mind set — goal now is merely to find classifiers barely better than random guessing
- **versatile**
 - can use with data that is textual, numeric, discrete, etc.
 - has been extended to learning problems well beyond binary classification
Caveats

- performance of AdaBoost depends on data and weak learner
- consistent with theory, AdaBoost can fail if
 - weak classifiers too complex → overfitting
 - weak classifiers too weak \((\gamma_t \to 0\) too quickly) → underfitting
 → low margins → overfitting
- empirically, AdaBoost seems especially susceptible to uniform noise
UCI Experiments

- tested AdaBoost on UCI benchmarks
- used:
 - C4.5 (Quinlan’s decision tree algorithm)
 - “decision stumps”: very simple rules of thumb that test on single attributes

```
+1 predict

<table>
<thead>
<tr>
<th>eye color = brown ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
</tr>
<tr>
<td>predict +1</td>
</tr>
<tr>
<td>no</td>
</tr>
<tr>
<td>predict -1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>height &gt; 5 feet ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
</tr>
<tr>
<td>predict -1</td>
</tr>
<tr>
<td>no</td>
</tr>
<tr>
<td>predict -1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>predict +1</td>
</tr>
</tbody>
</table>
```
UCI Results

boosting Stumps

boosting C4.5
Multiclass Problems

- most direct extension effective only if all weak classifiers have error $\leq 1/2$
 - difficult to achieve for “weak” weak learners
- instead, reduce to binary problem by creating several binary questions for each example:
 “does or does not example x belong to class 1?”
 “does or does not example x belong to class 2?”
 ...
Application: Text Categorization

- weak classifiers are decision stumps
 - test for presence of word or short phrase in document
 - e.g.:

 “If the word Clinton appears in the document predict document is about politics”

- in our experiments, consistently beat or tied tested competitors
Extension: Confidence-rated Predictions

• useful to allow weak classifiers to express **confidences** about predictions

• formally, allow $h_t : X \rightarrow \mathbb{R}$

$$\text{sign}(h_t(x)) = \text{prediction}$$

$$|h_t(x)| = \text{“confidence”}$$

• proposed **general principle** for:
 • modifying AdaBoost
 • designing weak learner to find (confidence-rated) h_t’s

• sometimes makes learning much faster since removes need to undo under-confident predictions of earlier weak classifiers
Confidence-rated Predictions Help a Lot

<table>
<thead>
<tr>
<th>% error</th>
<th>round first reached</th>
<th>speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>conf.</td>
<td>no conf.</td>
</tr>
<tr>
<td>40</td>
<td>268</td>
<td>16,938</td>
</tr>
<tr>
<td>35</td>
<td>598</td>
<td>65,292</td>
</tr>
<tr>
<td>30</td>
<td>1,888</td>
<td>>80,000</td>
</tr>
</tbody>
</table>
Application: Human-computer Spoken Dialogue
[with Rahim, Di Fabbrizio, Dutton, Gupta, Hollister & Riccardi]

- phone “helpdesk” for AT&T’s Natural Voices text-to-speech business (1-877-741-4321)

- NLU’s job: classify caller utterances into 24 categories (demo, sales rep, pricing info, yes, no, etc.)
Incorporating Human Knowledge [with Rochery, Rahim & Gupta]

- boosting is data-driven
 - so works best with lots of data
- for rapid deployment, can’t wait to gather lots of data
 - want to compensate with human knowledge
- idea: balance fit to data against fit to prior, human-built model
Results

Classification Accuracy vs # Training Examples

- **data + knowledge**
- **data**
- **knowledge**
Application: Bidding Agents [with Stone, Csirik, Littman & McAllester]

- trading agent competition (TAC)
- 8 agents in each game
- must purchase flights, hotel rooms and entertainment tickets for 8 clients in complicated, interacting auctions
- value of one good depends on price of others
 - e.g., need both ingoing and outgoing flights
- so: need to predict prices, especially of hotel rooms
 - used boosting
- second place in tournament using straight scores
 - (first place with “handicapped” scores)
Predicting Hotel Prices

- predicting real numbers (prices)
- want to estimate entire distribution of prices, given current conditions

- main ideas:
 - reduce to multiple binary classification problems:
 - “is price above or below $100?”
 - “is price above or below $150?”
 :
 - extract probabilities using modification of boosting for logistic regression [Collins, Schapire & Singer, ’02] [Duffy & Helmbold ’99]

- can be applied to any conditional density estimation problem
Conclusions

- boosting is a useful new tool for classification and other learning problems
 - grounded in rich theory
 - performs well experimentally
 - often (but not always!) resistant to overfitting
 - many applications and extensions

- other stuff:
 - theoretical connections to:
 - game theory and linear programming
 - support-vector machines
 - logistic regression
 - convex analysis and Bregman distances
 - tool for data cleaning:
 - very effective at finding outliers (mislabeled or ambiguously labeled examples)