Data Mining on Streams

Using Decision Trees

CS 536: Machine Learning
Instructor: Michael Littman

TA: Yihua Wu

Outline

• Introduction to data streams
• Overview of traditional DT learning ALG
• DT learning ALGs on streams
• Open issues of learning on streams
What is Data Mining

• A technique for finding and describing structural patterns in data;
• A tool for helping to explain data and make predictions from it.

E.G.
supermarket chain
stock market analysis

The Data Stream Phenomenon

• Highly detailed, automatic, rapid data feeds.
 – Radar: meteorological observations.
 – Satellite: geodetics, radiation,…
 – Astronomical surveys: optical, IR, radio,…
 – Internet: traffic logs, user queries, email, financial,
 – Sensor nodes: many more “observation points”.
• Need for near-real time analysis of data feeds.
 – Detect outliers, extreme events, fraud, intrusion, anomalous activity, complex correlations, classification,…
 – Monitoring.
Models of Data Streams

- Signal $s[1...n]$. n is universe size.
- Three models:
 - Timeseries model: $s(1), s(2), ..., s(t), ...$
 - Cash Register model: $s(j) = s(j) + a(k)$. $a(k) > 0$. (insert only)
 - Turnstile model: $s(j) = s(j) + u(k)$. (both insert and delete)

Traditional vs. Stream Mining

<table>
<thead>
<tr>
<th></th>
<th>Traditional</th>
<th>Stream</th>
</tr>
</thead>
<tbody>
<tr>
<td>num of passes</td>
<td>multiple</td>
<td>single</td>
</tr>
<tr>
<td>time</td>
<td>unlimit</td>
<td>strict</td>
</tr>
<tr>
<td>memory</td>
<td>unlimit</td>
<td>strict</td>
</tr>
<tr>
<td>result</td>
<td>accurate</td>
<td>approximate</td>
</tr>
<tr>
<td>num of concepts</td>
<td>one</td>
<td>multiple</td>
</tr>
</tbody>
</table>
Desiderata

– Per item processing time
– Space stored
– Time for computing functions on s
– Must all be $\text{polylog}(n,||s||)$.

• And…
 – A one pass algorithm

Decision Tree

• **Decision tree** is a classification model. Its basic structure is a general tree structure.

 - internal node: test on example’s attribute values
 - leaf node: class labels

• **Input:** a set of examples (including both **attribute** and **class** variables)

• **Output:**

 - **training data:** a decision tree structure
 - **test data:** the predicted class
Building Decision Trees

- Key idea:
 1) pick an attribute to test at root;
 2) divide the training data into subsets D_i for each value the attribute can take on;
 3) build the tree for each D_i and splice it in under the appropriate branch at the root

- Pick an attribute:
 Find an attribute that divides data into as pure subsets as possible.
Entropy Value

- **Entropy value**

 Given P_1, \ldots, P_m, $0 \leq P_i \leq 1$, $1 \leq i \leq m$; \[
 \sum_{i=1}^{m} P_i = 1
 \]

 Entropy $(P_1, P_2, \ldots, P_m) = -\sum_{i=1}^{m} P_i \log P_i$

 ![Entropy Graph]

 The larger the entropy value, the less pure the data is.

Gain Value

- For each class C_i and given data D, let $n_i = |D_{c=c_i}|$ (m is the # of classes)

 $\text{Data-Info}([n_1, n_2, \ldots, n_m]) = \text{entropy}(n_1/n, n_2/n, \ldots, n_m/n)$,
 where $n = |D|$.

- For feature f_i with values v_1, \ldots, v_{a_i}

 $\text{Split-Info}(f_i, D) = \sum_{j=1}^{a_i} w_j \text{Data-Info}([D_{f_i=v_j}, c \neq c_i, \ldots, D_{f_i=v_j}, c = c_i])$
 where $w_j = |D_{f_i=v_j}|/|D|$.

- $\text{Gain}(f_i, D) = \text{Data-Info}([n_1, n_2, \ldots, n_m]) - \text{Split-Info}(f_i, D)$

- Pick f_i with the largest $\text{Gain}(f_i, D)$.
Sufficient Statistics

Split-Info \(f, D \) = \(\sum_{j=1}^{w} w_j \text{Data} - \text{Info}([D_{V, c = c_1}, ..., D_{V, c = c_w}]) \)

\[
= \sum_j \left| \frac{n_{ij}}{n_i} \right| \sum_k \left(-\frac{n_{ijk}}{n_{ij}} \log \frac{n_{ijk}}{n_{ij}} \right)
\]

Sufficient Statistics: \(n_{ijk} \), the number of examples whose \(i \)th attribute has the \(j \)th value, and are classified to the \(k \)th class.

Criteria
Drawbacks

• One pass of data for each internal node, multiple passes in total. (stream: only one pass)

• Once I make the decision on an attribute, never reconsider. (stream: concept drifts)

Hoeffding Bound

• Consider a real-valued random variable r whose range is R. Suppose we have n independent observations of this variable, and compute their mean \bar{r}. The hoeffding bound states that, with probability $1-\delta$, the true mean of the variable is at least $\bar{r} - \varepsilon$, where

$$\varepsilon = \sqrt{\frac{R^2 \ln(1/\delta)}{2n}}$$
Properties

- The hoeffding bound is independent of the probability distribution generating the observations.

- With high probability, the attribute chosen using \(n \) examples is the same that would be chosen using infinite examples.

Hoeffding Tree Algorithm (1)

- **Inputs:**
 - \(S \) is a sequence of examples,
 - \(X \) is a set of discrete attributes,
 - \(G(.) \) is a split evaluation function,
 - \(\delta \) is one minus the desired probability of choosing the correct attribute at any given node.

- **Output:**
 - \(HT \) is a decision tree.
Hoeffding Tree Algorithm (2)

Procedure HoeffdingTree(S, X, G, δ)

Let HT be a tree with a single leaf l₁ (the root).

For each class yₖ

For each value xᵢ of each attribute Xᵢ ∈ X

Let nᵢₖ(l₁)=0.

For each example (x, yₖ) in S

Sort (x, y) into a leaf l using HT.

For each xᵢ in x such that Xᵢ ∈ Xᵢ

Increment nᵢₖ(l₁).

If the examples seen so far at l are not all of the same class, then

Compute Gᵢ(Xᵢ) for each attribute Xᵢ ∈ Xᵢ using nᵢₖ(l₁).

Let Xₐ be the attribute with highest Gᵢ.

Let X₉ be the attribute with second-highest Gᵢ.

Compute ε using hoeffding bound.

If Gᵢ(Xₐ) - Gᵢ(X₉) > ε, then

Replace l by an internal node that splits on Xₐ.

For each branch of the split

Add a new leaf lₘ, and let Xₘ = X - {Xₐ}.

For each class yₖ and each value xᵢ of each attribute Xᵢ ∈ Xₘ

Let nᵢₖ(lₘ)=0.

Return HT.

Problems in Practice

• More than one attribute very close to the current best.

• How much time spent on a single example?

• Memory needed with the tree expansion?

• Number of candidate attributes at each node?
VFDT System

- It’s the Very Fast Decision Tree learner, based on the hoeffding tree algorithm.
- **Refinements:**
 - **Ties.** If $\Delta G < \varepsilon < \tau$, where τ is a user-specified threshold, split on the current best attribute.
 - **G computation.** Specify an n_{min} that must be accumulated at a leaf before G is recomputed.
 - **Memory.** If the max available memory is reached, VFDT deactivates the least promising leaves (w/ the lowest p_e) to make room for new ones. Can be reactivated if more promising later.
 - **Poor attributes.** Memory is minimized by dropping early on attributes whose difference from the best attribute’s G becomes greater than ε.

VFDT Analysis

- **Memory:** $O(ldvc)$
 - l: the number of leaves in the tree
 - d: the number of attributes
 - v: the max number of values per attribute
 - c: the number of classes
 - It’s independent of the number of examples seen.
- **Drawback:** doesn’t take care of the time-changing data streams, because we never update the tree structure ever since we finish building the tree.
Brute Force Algorithm

- A sliding window + the VFDT
 - Reapply VFDT to a moving window of examples every time a new example arrives.

- From $t \rightarrow t+1$, only $O(1)$ item in the sliding window changes, but we have to rescan $O(w)$ items if reapply VFDT.

CVFDT

- **Concept-adapting Very Fast Decision Tree**
- **Basic Ideas:**
 - An extension to VFDT.
 - Maintains VFDT's speed and accuracy.
 - Detects and responds to concept changes in $O(1)$ per example.
 - Stays current while making the most of old data by growing an alternative subtree whenever an old one becomes questionable.
 - And replace the old with the new when the new becomes more accurate.
CVFDT Algorithm (1)

- Tree nodes (internal nodes & leaf nodes of HT and all alternate trees)
 - maintain sufficient statistics \(n_{ijk} \)
 - assigned a unique, monotonically increasing ID when created.
- Sliding windows
 - the max ID of the leaves an example reaches is attached with the example in W.

CVFDT Algorithm (2)

- observe a new example
 - increase the sufficient statistics \(n_{ijk} \) along the way from the root to leaves.
 - record the max ID of the leaves it reaches in HT and all alternate trees.
- forget the old
 - decrease the sufficient statistics \(n_{ijk} \) of every node the example, whose ID \(\leq \) the stored ID, reaches.
CVFDT Algorithm (3)

• Growth of alternate subtrees
 – If \(G(X_a) - G(X_b) \leq \varepsilon \) and \(\varepsilon > \tau \), grow a subtree.
 – Check periodically, say every \(f \) examples.

• Replacement with alternate subtrees
 – The next coming \(m \) examples are used to compare the accuracy of the current subtree in HT with the accuracies of all of its alternate subtrees.
 – Replace if the most accurate alternate is more accurate than the current.
 – Prune alternate subtrees that are not making progress.
 – Check periodically.

CVFDT vs. VFDT

<table>
<thead>
<tr>
<th></th>
<th>VFDT</th>
<th>CVFDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory</td>
<td>(O(ldvc))</td>
<td>(O(ndvc))</td>
</tr>
<tr>
<td>Time</td>
<td>(O(l_dvcw))</td>
<td>(O(l_dvc))</td>
</tr>
</tbody>
</table>

- \(l \): the number of leaves in HT
- \(n \): the number of nodes in the main tree and all alternate subtrees
- \(d \): the number of attributes
- \(v \): the max number of values per attribute
- \(c \): the number of classes
- \(l_H \): the height of HT
- \(l_d \): the length of the longest path through HT times the number of alternate trees
Open Issues in DT

• Space and Time complexity
• Other criteria to evaluate DTs?
• More strict bounds other than Hoeffding bound? (size of data to compute trees)
• When concepts change periodically, if some subtrees may become useful again, may we identify these situations and take advantage of them?
• What if coming examples have different weights?

Acknowledgements

• Michael Littman
 – Enjoy the class!
• S. Muthukrishnan
• Pedro Domingos
 – Mining High-Speed Data Streams, Pedro Domingos and Geoff Hulten, KDD 2000
 – Mining Time-Changing Data Streams, Geoff Hulten, Laurie Spencer, and Pedro Domingos, KDD 2001
The End

Thank you!