What are compilers?

Dr. Barbara G. Ryder
Dept of Computer Science
ryder@cs.rutgers.edu
http://www.cs.rutgers.edu/~ryder

A Compiler

• A program that translates computer programs that people write, into a language that a machine can execute
Parser

- Programs are written in a high-level language such as Java or C++
 - A grammar description of the programming language describes a well-formed program
 - Example of an English grammar excerpt:
 - sentence = noun verb John swims
 - sentence = noun verb adverb John swims well
 - sentence = article adjective noun verb the tall boy swims
 - sentence = article noun verb the boy swims
- Parsers check that a program adheres to the rules of the programming language’s grammar
 - If so, parser translates the program into an internal representation used by the compiler

Code Generator

- Translates the internal representation of a program into machine language
- Has all the info it needs in the internal representation and knows the program is correct according to the rules of the grammar
- Is targeted to output a specific machine language for a specific kind of computer
 - Can change to a different computer chip with a different instruction set by changing code generators, without other changes to the compiler
Arithmetic Expressions

- Arithmetic expressions using +* operations
 - Assume the acc can perform acc=acc <op> mem[const] where <op> can be any of +*
 - Assume we only use integer constants in our expressions
 - How can we represent an expression?

2 + 3 * 5?

Examples

\[4 + (5+6) \]

\[(4+5) * 6 \]
Internal Representation

- As we parse an expression we can build a (tree) representation of it.
- Let’s consider expressions involving integer variables and integer constants.

Example

\[
\begin{align*}
 b &= 3 \\
 x &= a + 2 \\
 y &= b + 1 \\
 z &= y \times x \\
 w &= a + 2 \\
 u &= 4 \times x
\end{align*}
\]
Example

\[b = 3 \]
\[x = a + 2 \]
\[y = b + 1 \]
\[z = y \times x \]
\[w = a + 2 \]
\[u = 4 \times x \]
Example

- **Optimizations**
 - Two labels on a+2 node saves computation; is encoded as \(x = a + 2; w = x; \)
 - Can figure out constant operands

After find constants, then \(z \) and \(u \) are same expression!

Example

Now how to generate machine language for this expression? Walk the graph and at each internal node, generate appropriate code.
Transformed Code

\[
\begin{align*}
&b = 3 \\
x & = a + 2 \\
w & = x \\
y & = 4 \\
z & = 4 \times x \\
u & = z \\
\end{align*}
\]

Comparison

<table>
<thead>
<tr>
<th>Original code</th>
<th>Optimized code</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b = 3)</td>
<td>(b = 3)</td>
</tr>
<tr>
<td>(x = a + 2)</td>
<td>(x = a + 2)</td>
</tr>
<tr>
<td>(y = b + 1)</td>
<td>(w = x)</td>
</tr>
<tr>
<td>(z = y \times x)</td>
<td>(y = 4)</td>
</tr>
<tr>
<td>(w = a + 2)</td>
<td>(z = 4 \times x)</td>
</tr>
<tr>
<td>(u = 4 \times x)</td>
<td>(u = z)</td>
</tr>
</tbody>
</table>

Note: fewer arithmetic operations and many inexpensive copies.
Code Generation

\[
\begin{align*}
b &= 3 & \text{mem}[42] &= 3 \\
x &= a + 2 & \text{acc} &= 2 \\
\text{acc} &= \text{acc} + \text{mem}[43] \\
\text{mem}[44] &= \text{acc} \\
w &= x & \text{mem}[45] &= \text{acc} \\
y &= 4 & \text{mem}[46] &= 4 \\
z &= 4 \times x & \text{acc} &= 4 \\
\text{acc} &= \text{acc} \times \text{mem}[44] \\
\text{mem}[46] &= \text{acc} \\
\text{mem}[47] &= \text{acc}
\end{align*}
\]

Digging Deeper - Grammars

- How do we define well-formed expressions?
 \[\text{Expr} = \text{Const} \langle \text{op} \rangle \text{Const}, \text{where} \langle \text{op} \rangle = +\star\]
- How do we show the rules of arithmetic for unparenthesized expressions?
 \[
 \begin{align*}
 \text{Expr} &= \text{Subexp} + \text{Subexp} \\
 \text{Subexp} &= \text{Const} \times \text{Const} \\
 \text{Subexp} &= \text{Const}
 \end{align*}
 \]

Grammar rules correspond to shape of the tree.
Examples

Expr = Subexp + Subexp
Subexp = Const * Const
Subexp = Const

Adding parentheses on expressions requires new rule:
Subexp = (Expr)

Example

Adding arbitrary length, nested subexpressions requires changing the grammar.

Expr = Subexp + Subexp
Subexp = Const * Const
Subexp = Const
Subexp = (Expr)

Expr = Expr + Expr
Expr = Subexp
Subexp = Subexp * Subexp
Subexp = Const
Subexp = (Expr)
Complicated Example

```
Expr = Expr + Expr
Expr = Subexp
Subexp = Subexp * Subexp
Subexp = Const
Subexp = ( Expr )
```

```
2*3+5*6+7*8
```

```
Expr
  +
  /  \
/    \
Expr  Expr
    +   *
  /  /
/    /
Expr  Subexp
    +   *
  /  /
/    /
Subexp  Subexp
      +   *
    /    /
   /      /
  /        \
/          \
2        Const
```

Summing Up

- Parser uses grammar rules to check expressions for correct structure — syntax
- If correct, then builds the expression graphs
- Optimizes the graphs to find repeated subexpressions and constants that can be evaluated at compile-time
- Then generates code from the graph
Interpreters

• A compiler translates a program into machine language
• An interpreter translates the statements in a program by executing equivalent commands
 - No real translation step
• Interpretation requires that a programming language have a defined meaning for its statements -- semantics
 - Sometimes defined mathematically, sometimes in English.

Expression Interpreter

• Requires
 • input expression
 • rules for operator evaluation
 • a stack -- storage for partial results
 - Think of how you store plates in your cupboard:
 » Take next plate to use off the top of the pile
 » Stack newly cleaned plates on the top of the pile
 » LIFO: last-in, first-out

• Example
 • Interpreter for un-parenthesized arithmetic expressions
Example

Initially,
Input: 2 * 3 + 5

Operator stack: empty
Operand stack: empty

Input: 2 * 3 + 5
empty

Input: * 3 + 5
*

Input: 3 + 5
*

Example

2 * 3 + 5

Operator stack:
Operand stack:

Input: + 5
+

Input: 5
+

Input: empty
empty

Answer on top of operand stack

top of stack
Example

Initially,
Input: 2 + 3 * 5

<table>
<thead>
<tr>
<th>Operator stack:</th>
<th>Operand stack:</th>
</tr>
</thead>
<tbody>
<tr>
<td>empty</td>
<td>empty</td>
</tr>
</tbody>
</table>

Input: 2 + 3 * 5

| empty | 2 |

Input: + 3 * 5

| + | 2 |

Input: 3 * 5

| + | 3 2 |

Example

2 + 3 * 5

<table>
<thead>
<tr>
<th>Operator stack:</th>
<th>Operand stack:</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>3 2</td>
</tr>
</tbody>
</table>

Input: * 5

| * | 3 2 |

Input: 5

| * | 5 3 2 |
Example

\[2 + 3 \times 5 \]

<table>
<thead>
<tr>
<th>*</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Input: empty

| + | 15 |
| | 2 |

Algorithm

- **When see operator input, compare to top of operator stack.**
 - If + on stack and + in input, pop 2 operands, evaluate their sum, push result on top of operand stack
 - If + on stack and * in input, push operator
 - If * on stack and + in input, pop 2 operands, evaluate the product, push result on top of operand stack
 - If * on stack and * in input, pop 2 operands, evaluate their product, push result on top of operand stack

- Always push operands onto operand stack
- When input is empty, evaluate all operators left on stack
- Answer is on top of operand stack
What's going on?

- Algorithm is enforcing rules of arithmetic, assuming we accumulate sums and products from left to right.
 - If + on stack and + in input, pop 2 operands, evaluate, push result on top of operand stack
 » 2+3+4 ~ (2+3) + 4
 - If + on stack and * in input, push operator
 » Matches ? + ? * ?
 - If * on stack and + in input, pop 2 operands, evaluate, push result on top of operand stack
 » Matches ? * ? + ?
 - If * on stack and * in input, pop 2 operands, evaluate, push result on top of operand stack
 » 2*3*4 ~ (2*3) * 4

How are interpreters useful?

- Allow prototyping of new programming languages (PL's)
 - Get to test out PL design quickly
 - E.g., Scheme, Prolog, Java
- A way to achieve portability and universality for a PL
 - Generate code to be interpreted by a Virtual Machine (VM)
 - Can install the PL on a different machine (i.e., chip) merely by rewriting the VM
 - As long as PL definition is carefully written (syntax and semantics), programs should work equivalently!
 - Model for Java (e.g., JVM - Java Virtual Machine)
Java

- Language definition ~mid-1990's
- Used to write applications built out of pieces (e.g., libraries, components, middleware)
 - Built by different people, in different places, on different machines
 - Works because of VM mechanism
- Interpretation frees user from worries about machine-dependent translation details

PLs & Compilers: An Incomplete History

- 1950's
 - Machine language programming
 - Scientific computation in Fortran with first compilers
 - LISP for non-numerical computation
- 1960's
 - First optimizing Fortran compiler (IBM)
- 1970's
 - First program analyses designed to enable complex optimizations
 - C language and UNIX (Linux is a form of UNIX)
 - Optimizing for space and time savings
PLs & Compilers: An Informal History

- 1980's
 - First widely-used object-oriented PLs - Smalltalk, C++
 - Compilers translate for parallel machines (e.g., Thinking Machines, Cray)
 - PLs allowing explicit parallelism (i.e., use of multiple processors; Ada)

- 1990's
 - Birth of the Internet
 - PLs for explicitly distributed computation (e.g., across machines in a network)
 - Object-oriented PLs - Java (VMs)

- 2000's
 - Compiling for low power
 - Special purpose (domain specific) PLs
 - Scalability, distributed computation, ubiquity