Let’s say we’ve got a list of \(n \) small integers (\(n = 10,000,000,000 \), for example).

We want to know the average value of the integers.

How can we calculate this value?

What running time would you expect?
Straightforward Algorithm

```python
def average(l):
    total = 0
    for i in l:
        total = total + i
    return (total + 0.0)/len(l)
```

- Totals up all the elements in the list.
- Divides by the length of the list.
- Running time proportional to the list length ($O(n)$), which could be quite long...

Sampling

- What if we are content with 2% error?
- To estimate the mean of a population (of bounded variance), the mean of a random sample approaches the mean of the population proportionally to the square root of the sample size.
- Error depends on variance, confidence, and sample size: Not the list size!
Demo: Oldest?

- Michael G.
- Ken
- Ray
- Steven
- Stephen
- Uyoata
- Michael S.
- Gretchen
- Vishan
- Krina
- Jawad
- Zach
- Krithika
- Caleb

Why Random?

```python
def averageSample(l):
    m = 100
    total = 0
    for i in range(m):
        total = total + l[randint(0,len(l))]
    return (total + 0.0)/m

def averageFirst(l):
    m = 100
    total = 0
    for i in range(m):
        total = total + l[i]
    return (total + 0.0)/m
```

- What can go wrong if sample not random?
- \(l = [0,...,0,1,...,1] \) (600 0s, then 400 1s)
- averageSample(l): 0.44; averageFirst(l): 0.0; average(l): 0.40.
Another Random Example

- **quicksort**: Another sorting algorithm.
- **Idea**: Break the list of \(n+1 \) elements into the median and two lists of \(n/2 \). The two lists are those smaller than the median and those larger than the median.
- Sort the two lists separately.
- Glue them together: All \(n \) are sorted.

Quicksort Example

- Original list:
 - \([56, 80, 66, 64, 37, 36, 91, 48, 17, 20, 86, 89, 41, 1, 96, 12, 74]\)
- Median is 56; smaller: \([37, 36, 48, 17, 20, 41, 1, 12]\)
 - bigger: \([80, 66, 64, 91, 86, 89, 96, 74]\)
- Sort each; smaller: \([1, 12, 17, 20, 36, 37, 41, 48]\)
 - bigger: \([64, 66, 74, 80, 86, 89, 91, 96]\)
- Glue:
 - \([1, 12, 17, 20, 36, 37, 41, 48, 56, 64, 66, 74, 80, 86, 89, 91, 96]\)
But...

- If we could find the median, the whole sorting process would be pretty easy.
- Sufficient to split anywhere in the middle half at least half the time: Still $O(n \log n)$.
- Pick a random list element. 25% of the time, it will be in the 1st quarter of the sorted list, 25% of the time in the last quarter, and 50% in the middle half.

Solve Hard Problems?

- Many randomized algorithms have better running time or are more to program than their deterministic counterparts.
- Is random computation somehow more powerful? Can it solve NP-complete problems fast?
 - Guess a “yes” proof: Check if it’s right.
 - Not sure, but probably doesn’t help. Probability of guessing right can be $1/2^n$.
Using Random Bits

- Since numbers are made of bits, we can generate a random number using random bits.
- If there’s a way to create random bits (coin flips), how make a random number from 0 to 3 (dreidel)?
- How about 0 to 15?
- Tricky: How about 0 to 2?

Examples

def rand4():
 return randbit() * 2 + randbit()

def rand16():
 return randbit() * 8 + randbit() * 4 + randbit() * 2 + randbit()

def rand3():
 x = 3
 while x == 3:
 x = randbit() * 2 + randbit()
 return x

(1 1/3 calls per random number. 0, 1, 2 equally likely.)
Simple randbit

```python
randomseed = 1000
def randbit():
    global randomseed
    randomseed = randomseed * 1103515245 + 12345
    return int(randomseed / 65536) % 2 == 1
```

In 50 calls, 26 True, 24 False:

```
[True, True, True, True, False, True, False, True, False, False, True, False, True, True, True, False, False, True, False, True, True, True, False, True, False, True, False, False, True, True, True, True, False, True, False, True, False, True, False, True, False, False, False]
```

State of the Art

- The ... Mersenne twister algorithm, by Makoto Matsumoto and Takuji Nishimura in 1997 ... has a colossal period of $2^{19937}-1$ iterations (probably more than the number of computations which can be performed in the future existence of the universe), is proven to be equidistributed in 623 dimensions (for 32-bit values), and runs faster than all but the least statistically desirable generators.

- Python has a package for this generator.
Letter Substitution

- Caesar rotate (rot13).

```python
def encode(c):
    if c < 0 or c >= 26: return c
    if c + 13 >= 26: return c-13
    return c+13

def rot13(s):
    return ''.join([chr(encode(ord(i)-ord('a'))+ord('a')) for i in s])

rot13('michael littman')  zvpunry yvggzna
rot13('ravine')                enivar
rot13('pbzchgref oht zr')   ???
```

Too Crackable

- rot13 is hard to read, but easy to decode.
- In fact, any letter-for-letter substitution code can be cracked given a long enough piece of text.
- Doesn’t even need to be that long...
Cryptogram

- “I ARRIVED AT THE AIRPORT ONE HOUR EARLY SO THAT, IN ACCORDANCE WITH AIRLINE PROCEDURES, I COULD STAND AROUND.” - *DAVE *BARRY

- B > I, PVS > THE, GP > AT, JBPV > WITH, BH > IN, DPGHA > STAND, KHS > ONE, GBOZKOP > AIRPORT, VKEO > HOUR, GOOBWSA > ARRIVED, SGOTU > EARLY, FKETA > COULD, QGOOU > BARRY

XOR and Random Bits

- 0 xor 0 = 0, 1 xor 0 = 1, 0 xor 1 = 1, 1 xor 1 = 0
- (2nd bit says whether or not to flip 1st bit.)
- Let’s say you and I have got two copies of a long sequence of random bits (called a “pad”): pad = 1100111110.
- I want to send you ten bits so no one can figure out what I sent but you: msg = 0110111010.
Message Received

We can use our secret bits to encrypt (encode) and decrypt (decode) the message we want to transmit:

\[send = msg \text{ xor } pad = 1100111110 \text{ xor } 0110111010 \]
\[= 101000100. \]

\[decode = send \text{ xor } pad = 101000100 \text{ xor } 0110111010 \]
\[= 1100111110 = msg! \]

If we agree on a random seed, can make a pseudorandom pad.

Public Key Idea

- I’ve got a number \(x \) that is the product of two big prime numbers.
- I tell everyone the product, which is what is needed to encrypt messages for me.
- Only \(I \) know the factors, which are what are needed to decrypt messages for me.
- Because factoring is hard, people can send me secret messages, even though I’ve publicized \(x \).
Quantum Effects

- Pseudo-random-based encryption always has a chance of being cracked.
- Only source of true randomness: quantum mechanics (the rest of physics is deterministic, if chaotic).
- Einstein didn’t like it. Tough.
Quantum Computer

• A quantum bit (qubit) is simultaneously zero and one (a superposition). n qubits can represent 2^n possibilities.

• When you look, one possibility presents itself, according to well understood probabilistic rules. A kind of parallel search.

• Shor: A computer with qubits can factor numbers in polynomial time!

If Factoring is Easy...

• quantum computers invalidate standard cryptosystems. No more secrets.

• However, they also open up some wild possibilities.

• quantum cryptography: qubits can be completely random and correlated at a distance. The perfect pad!
Next Time

- Image processing.
- We’ve completed Hillis 1-5. We’ll start on Chapter 6 after the break/midterm.