Today’s Advice

- My only piece of advice for today:
- Don’t listen to anything I say today; it will hurt your head.
Self Contradiction

• The main topic today is self reference and self contradiction.
• The idea is that “interesting” things happen when something can refer to itself and assert that it has properties that negate its own existence.

Oxymorons

• We’re all familiar with oxymorons: words that harbor two conflicting meanings.
• Top ten list from http://www.oxymoronlist.com/:

18. Personal Computer 8. Working Vacation
17. Silent Scream 7. Tax Return
16. Living Dead 6. Virtual Reality
15. Same Difference 5. Dodge Ram
12. Tight Slacks 2. Healthy Tan
11. Peace Force 1. Microsoft Works
Surface Contradiction

• Examples seem incongruous, but they all actually make sense.

• “jumbo shrimp” just means pretty big for a shrimp, which makes perfect sense. Like “pretty fly for a white guy”.

• The contradiction isn’t very deep.

Deeper Self Denial

• Crowd: “We are all individuals!” Man: “I’m not.” (From Life of Brian)

• Eschew obfuscation.

• When you least expect it: expect it!

• “Last month I blew $5,000 on a reincarnation seminar. I figured, hey, you only live once.” Randy Shakes
Escher Parody

Serious Fun

• There’s a weird idea here: You shouldn’t be able to create a statement that, if interpreted properly, results in another statement that contradicts the original statement.

• It’s a “go back in time and kill your own grandfather” sort of thing.

• There are a bunch of deep mathematical insights that come from applying this idea.

• Here’s a quick survey before the main event.
Russell’s Paradox

- In the town of Chelm, there’s a barber. His job is to shave every man in town who does not shave himself.

- Who shaves the barber?

- For the statement to be true:
 - If he shaves himself, then he does not need to shave himself.
 - If he does not shave himself, then he needs to shave himself.

Naive Set Theory

- This example shows that there are limitations to how you can create meaningful sets.
- If there is unrestricted self-reference, you can create impossible situations.
Godel’s Theorem

“This statement cannot be proven.”

• Kurt Godel showed that any system of mathematics that includes the integers can express this self-referential statement.

 • If it’s true, you can’t prove it! (Incompleteness.)
 • If it’s false, you can prove something that’s false! (Inconsistency.)
 • Tough choice.

Kantor’s Diagonalization

• How many fractions are there? Infinite.
• How many decimals are there? Infinite.
• Are they the same size infinity?
• Well, we can make an infinitely long list that includes every fraction:
List of Fractions

- Start with all the fractions where the numerator and denominator add up to 1, then 2, then 3.
- Every fraction must eventually appear.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1</td>
<td>1/5</td>
<td>0/9</td>
</tr>
<tr>
<td>0/2</td>
<td>2/4</td>
<td>1/8</td>
</tr>
<tr>
<td>1/1</td>
<td>3/3</td>
<td>2/7</td>
</tr>
<tr>
<td>0/3</td>
<td>0/7</td>
<td>3/6</td>
</tr>
<tr>
<td>1/2</td>
<td>1/6</td>
<td>4/5</td>
</tr>
<tr>
<td>0/4</td>
<td>2/5</td>
<td>0/10</td>
</tr>
<tr>
<td>1/3</td>
<td>3/4</td>
<td>1/9</td>
</tr>
<tr>
<td>2/2</td>
<td>0/8</td>
<td>2/8</td>
</tr>
</tbody>
</table>

And The Decimals?

- Can we list all the decimals?
- The “add to a constant” trick doesn’t work anymore, since we have decimals like 0.3333... where the digit sum is infinite.
- So, let’s say we can list them all.
- Here’s the list, hypothetically:
On The List?

• Read down the diagonal.
 0.5898032467...

• Add 1 to each digit (with wraparound).
 0.6909143578...

• The resulting decimal is not on the list! (Differs from the \(i\)th one in the \(i\)th digit.)

<table>
<thead>
<tr>
<th>0.57953916570123654</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.98877675309679680</td>
</tr>
<tr>
<td>0.54921087722147810</td>
</tr>
<tr>
<td>0.97889400202076116</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0.68930952976230064</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.73758318399567813</td>
</tr>
<tr>
<td>0.33201823212447767</td>
</tr>
<tr>
<td>0.62085164445848273</td>
</tr>
<tr>
<td>0.22859580612307950</td>
</tr>
<tr>
<td>0.26912510570620329</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

Conclusion

• You \textit{can’t} make a list of all the decimals.
• You \textit{can} make a list of all the fractions.
• There are more decimals (real numbers) than fractions (rational numbers)!
Looping Forever

- Given input 10, each of these programs counts backwards from 10 to 1.

- For each, is there an input \(n \) we can give that causes the program to loop forever?

```python
def ex1(n):
    for i in range(n, 0, -1):
        print i

def ex2(n):
    while (n > 0):
        print n
        n = n - 1

def ex3(n):
    while (1):
        print n
        n = n - 1
        if (n == 0): return
```

The Halting Problem

- Looping forever is one of the most annoying classes of programming errors.

- Would be great if a tool could automatically detect whether a program always halted.

- We’d like a subroutine \texttt{halt} that takes a program as input and returns \texttt{true} if the program halts on all inputs and \texttt{false} if some input makes it loop forever.
Contrary

• If a halt subroutine exists, we can use it to create other programs.

```python
def contrary(prog):
    if prog == contrary:
        if halt(prog) == true:
            while (1):
                print "loop"
        return
```

• For example, this program takes a program “prog” as input, and, if prog is the program contrary and halt(prog) is true, contrary loops forever.

• Otherwise it halts.

Contrary Analysis

• What does contrary(contrary) do?

• If halt(contrary) is true, that means contrary halts on all inputs, so it should halt on itself as input.

• But, in this case, contrary(contrary) loops forever!

• So, it must be that halt(contrary) is false, so contrary loops forever on some input.

• But, in this case, note that contrary(prog) halts for any input, including contrary.
Halting Summary

- If contrary(contrary) halts, it loops forever.
- If contrary(contrary) loops forever, it halts.
- As with the Barber paradox, the problem here is our assumption, specifically, that halt exists.
- So, halt is a well-defined problem that no program can solve: It is incomputable.

CS Implications

- There are many problems that turn out to be incomputable.
- All involve computations that might take an infinite number of comparisons to solve and you’re never quite sure when to stop.
- An open problem I posed in my thesis (finding optimal policies for partially observable Markov decision processes) was later shown to be incomputable.
Philosophical Implication

- Some have argued that since people can tell if programs halt but programs can’t tell if programs halt, people are fundamentally more powerful / intelligent than computers.
- Hogwash.

3x+1 Problem

- Take a number. Half it if it’s even. Otherwise, triple and add 1. Continue until 1 is reached.
- Any power of 2 will be brought to 1 quickly.
- Some take awhile: 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1
- No one knows if it halts on all inputs!
- We can’t (easily) solve the halting problem.

```python
def even(x):
    return not x%2

def collatz(x):
    while (x > 1):
        print x
        if even(x):
            x = x/2
        else:
            x = 3*x+1
```
Subber

• Here’s an odd little aside.

• For many formal self-reference-based proofs, programs need to be able to refer to themselves.

• How do you do that?

• Consider a subroutine subber.

• It takes a string as input and produces a new string as output.

• The output is essentially a copy, but some special characters are converted (subbed).

Code

• 2: “

• 3: the whole string

• 4: end of line

• 5: tab

• 6: “\n”

• 7: “\t”

• 8: “\\”

• None of these characters are in subber, by the way.

```python
def subber(q):
    o = ""
    for i in q:
        if i == str(1+1): o = o + """n
        elif i == str(1+1+1): o = o + q
        elif i == str(1+1+1+1): o = o + "\n"
        elif i == str(1+1+1+1+1): o = o + "\t"
        elif i == str(1+1+1+1+1+1): o = o + "\\n"
        elif i == str(1+1+1+1+1+1+1): o = o + "\\t"
        elif i == str(1+1+1+1+1+1+1+1): o = o + "\\\\n"
        else: o = o + i
    return o
```
Self-Referential Program

• Running this program causes it to print precisely the program itself!

 def selfPrint():
 print subber("def selfPrint():45print subber(232)")

• Can even include subber, too:

 def selfContained():
 print subber("def subber(q):45o = 2245for i in q:455if i == str(1+1): o = o + '2'455elif i == str(1+1+1): o = o + q455elif i == str(1+1+1+1): o = o + 262455elif i == str(1+1+1+1+1): o = o + 282+2n2455elif i == str(1+1+1+1+1+1+1): o = o + 2882455else: o = o + i455return o455def selfContained():45print subber(232)")

Weird?

• Something weird and “birth”-like here. The program has a string, which is the program, which somehow has the string, which is the program...

• Should be infinitely big, but it’s not via clever use of variables and substitution.
Next Time

• Cryptography.
• Finish Hillis, Chapter 4.