Lecture 11:
Sorting Algorithms

CS442: Great Insights in Computer Science
Michael L. Littman, Spring 2006

Sorting Algorithms

- Another name for the lecture is “Google II”.
- Sorting is a great topic in CS:
 - relatively simple
 - extremely important
 - illustrates lots of different algorithms and analysis techniques
Google...

- Last time, I said Google does its thing in a couple of very significant steps:

I. Collect pages from the web (graph search).

II. Index them.

III. Respond to queries.
What Can We Do?

• All the information is there, and we can sift through it.

• But, it’s slow and error prone to skim through every page every time we want to find something.

• If there are \(N \) words (total) on the web pages, how long would it take to sift through them each time? (Use “big O” notation.)

• How can we organize the data to simplify?

Sort, Remove Duplicates

4 a	9 course	3 frames	9 http	3 no	4 python	9 there
4 a	4 courses	3 frameset	9 i	3 noframes	3 noresize	3 this
4 add	9 courses	9 from	9 in	9 not	9 noth	9 this
4 address	4 cs	9 google	9 include	9 index	9 odf	3 rows
9 and	9 cs	9 googleblackout index	9 insights	4 old	4 of	3 rutgers
9 any	9 did	9 googletest	9 index	9 on	3 rutgers	3 title
4 apache	4 differences	9 great	9 is	9 other	3 science	3 title
4 at	4 directory	4 h	9 its	9 own	9 to	3 title
4 b	9 discovery	9 h	9 it	9 own	3 sc	3 title
9 b	4 doctype	9 h	9 its	9 owner	3 scrol	3 science
3 babes	9 documents	3 head	3 january	3 p	4 server	9 sever
3 banner	3 head	3 has	3 left	9 p	3 socks	3 search
3 body	3 h	3 has	3 left	3 page	3 socks	4 server
4 body	4 h	3 history	3 main	9 page	9 page	3 server
3 browser	4 edu	9 history	9 match	9 pages	9 page	9 server
3 but	9 edu	9 homepage	9 ml	9 parent	9 page	3 server
4 c	4 en	9 how	9 ml	9 port	9 page	3 server
3 cols	4 exception	4 href	4 ml	4 pdf	3 target	9 sever
9 computer	9 explicitly	9 href	4 mlittman	4 port	9 target	9 sever
9 concatenating	4 final	3 htm	4 mlittman	4 port	9 target	9 server
9 consecutive	9 find	3 html	3 monica	4 public	9 target	9 server
9 consists	9 for	4 html	3 name	4 purpose	9 target	9 server
3 contents	3 frame	9 html	4 nim	4 py	3 target	9 server
3 frame	9 html	4 nim	4 py	3 them	9 server	9 server
Sort by Birthdate

- Pick 8 people.
- Can only ask a pair of people who has the later birthdate (month and day).
- insertionSort(namesClass)

Insertion Sort

- Idea is quite simple.
- We go through the list one item at a time.
- We keep a sorted list of everything we’ve gone through so far.
- When we need to put a new item into the list, we go through the sorted list in order to figure out where it fits.
Insertion Sort Analysis

- **How many comparisons does Insertion Sort do in the worst case?** Assume the list is length N. Hint: What song is it like? You can use “big O” notation.
- **What kind of list would force it to do this many comparisons?**
- **How many comparisons does Insertion Sort do in the best case?** Ditto.

Other Sorting Approaches

- **How else can you imagine sorting?**
- **Fewer comparisons than $O(N^2)$?**
 - bubblesort
 - counting sort
 - selection sort
 - Shell sort
Guess Who?

- Each player picks a character.
- Players take turns asking each other yes/no questions.
- First player to uniquely identify the other player’s character wins!

Mindreader: Set Cards
Insight

- Each question splits the remaining set of possibilities into two subsets (yes and no).
- We want to pick a question so that the larger of the two subsets is as small as possible.
- Half!
- How many questions?
 - \(n=1 \), questions = 0
 - \(n=2 \), questions = 1
 - \(n=4 \), questions = 2
 - \(n=8 \), questions = 3
 - \(n=16 \), questions = 4
 - \(n \), questions = \(\log n \).

Binary Search

- Let’s say we have a sorted list of \(n \) items.
- How many comparisons do we need to make to find where a new item belongs in the list?
- Can start at the bottom and compare until the new item is bigger.
- Maximum number of comparisons?
 - One for each position: \(n \).
 - We can ask better questions: bigger than the halfway mark?
 - That gets us: \(\log (n+1) \)!
Binary Search Sort

- Using $O(\lg N)$ comparisons, can find where to insert the next item.
- Since we insert N items, comparisons is $O(N \lg N)$ in total.
- Can’t quite implement it that way, though: Once we find the spot, $O(N)$ to stick it in.
- However, other algorithms are really $O(N \lg N)$.
- Hillis mentions Quick Sort and Merge Sort.

```plaintext
mergeSort(names)
```

Merge Sort

- View all the items as separate sorted lists.
- Pick the two shortest lists and combine them into a single sorted list:
 - Compare the first items. Move smaller one to end of the combined list.
- Repeat until one listed is empty.
- Repeat until only a single list is left.
Merge Sort Analysis

- To merge two lists of length N requires at most $2N$ comparisons.
- If there are N items in L lists of length N/L, after one merging pass, N comparisons, $L/2$ lists of length $2N/L$.
- Length doubles each time.
- Initially, $L = N$ lists of length 1 each.
- After $\log N$ merging passes, 1 list of length N.
- Total comparisons: $O(N \log N)$.

Lower Bound

- We’ve shown that we can sort in $O(N \log N)$ comparisons.
- What if someone comes along and does it better?
- We need to protect ourselves and prove a “lower bound”: that is, to show that nothing less than $N \log N$ will suffice.
- Let’s return to “Guess Who?”.
Sorting Lower Bound

- If we are asking yes/no questions to uniquely identify one item out of n, how many questions do we need in the worst case?
- Might be as many as $\lg n$, since each question cannot exclude more than half.
- Sorting N elements identifies the correct ordering using just yes/no questions.

Counting Orderings

- How many ways to order N elements?
 - 1: 1
 - 2: 2
 - 3: $6 = 3 \times 2$
 - 4: $24 = 4 \times 3 \times 2$
 - 5: $120 = 5 \times 4 \times 3 \times 2$
- N: $N! = N \times (N-1) \times (N-2) \times \ldots \times 2 \times 1$
 - Known as the *factorial* function.
 - Thus, sorting must find the unique sorted ordering from a set of $N!$ possibilities using just yes/no questions.
A Little Math

\[N! = \]
\[1 \times 2 \times 3 \times \ldots \times \frac{N}{2} \times (\frac{N}{2} + 1) \times \ldots \times N \]
\[> (\frac{N}{2} + 1) \times \ldots \times N \]
\[> \frac{N}{2} \times \ldots \times \frac{N}{2} \]
\[= \frac{N}{2}^{\frac{N}{2}} \]

Number of comparisons to sort \(N \) items

- \# of yes/no questions to pick one out of \(N! \)
- \# of yes/no questions to pick one out of \(\frac{N}{2}^{N/2} \)
- \(\log \frac{N}{2}^{N/2} \)

= \(\frac{N}{2} \log \frac{N}{2} \)

or, essentially \(N \log N \). \(O(N \log N) \) wins!

Web Search, Again

- We’ve seen two of the major steps needed to implement a web search engine:
 - gather up pages using graph search
 - index the words using sorting

- In a later lecture, we’ll talk about the last step: using more than one computer to respond quickly to millions of queries a day.
Next Time

- NP Completeness.
- Still in Hillis, Chapter 5.