I-Before-E, Continued

• There are two ideas from last time that I’d like to flesh out a bit more.
• This time, let’s proceed bottom up.
Bit Equality

```python
def equal(bit1, bit2):
    return ((bit1 and bit2) or (not bit1 and not bit2))
```

- Output True if either bit1 = True and bit2 = True, or bit1 = False and bit2 = False (they are equal).

Group Equality

- Now that we can test two bits for equality, we would like to test a group of 5 bits for equality (two alphabetic characters).
- Two groups are equal if each of their bits are equal: bit 0 = bit 0, bit 1 = bit 1, etc.

```python
def equal5(char1, char2):
    return (equal(char1[0],char2[0])
            and (equal(char1[1],char2[1])
                 and (equal(char1[2],char2[2])
                      and (equal(char1[3],char2[3])
                           and equal(char1[4],char2[4])))))
```
Equal5 Diagram

Gates in EQUAL5

- 10 inputs (2 groups of 5), 1 output bit.
- The equal5 gate consists of
 - 4 “and” gates
 - 5 “equal” gates
 - 2 “and”, 2 “not”, 1 “or” (5 total)
- Total = 29 gates
Local Exception Check

[False, False, False, True, True] is ‘c’
[False, True, False, False, True] is ‘i’
[False, False, True, False, True] is ‘e’

```python
def exception3(x, y, z):
    ex1 = AND3(equal5(x, [False, False, False, True, True]),
                equal5(y, [False, True, False, False, True]),
                equal5(z, [False, False, True, False, True]))
    ex2 = AND3(not equal5(x, [False, False, False, True, True]),
                equal5(y, [False, False, True, False, True]),
                equal5(z, [False, True, False, False, True]))
    return ex1 or ex2
```

- A triple of letters is an exception if it is equal to “cie” or “*ei” where * is not equal to c.
Gates in Exception5

- 15 inputs (3 groups of 5), 1 output bit.
- The Exception5 gate consists of
 - 2 "and" gates, 1 "not", 1 "or" (4 total)
 - 6 "equal5" gates
 - 29 total basic gates per gate
- Total = 178 gates.

Finally, The Whole Thing

word is 7 groups of 5 bits each
[False, False, False, False, False] is ‘_’
def exception(word):
 ps = exception3([False, False, False, False, False], word[0], word[1])
 p0 = exception3(word[0], word[1], word[2])
 p1 = exception3(word[1], word[2], word[3])
 p2 = exception3(word[2], word[3], word[4])
 p3 = exception3(word[3], word[4], word[5])
 p4 = exception3(word[4], word[5], word[6])
 return ((ps or p0) or p1) or (p2 or (p3 or p4))

- A seven-letter word is an exception if any of its 3-letter windows shows an exception.
Gates in Exception

- 35 inputs (7 groups of 5), 1 output bit.
- The Exception gate consists of
 - 5 “or” gates
 - 6 “exception3” gates
 - 178 total basic gates per gate
- Total = 1073 gates, without breaking a sweat.
Exception

- Let’s try it out.
- http://www.cs.rutgers.edu/~mlittman/courses/cs442-06/python/exception.py

Counting (Decimal)

- How do we count?
- Start at the bottom digit.
 - If it’s less than 9, add one to it.
 - If it’s equal to nine, make it zero and proceed to the digit to the left.
Counting (Binary)

• Counting in binary is the same idea.
• Start at the bottom (rightmost) bit.
• If it’s less than 1, add one to it.
• If it’s equal to 1, make it zero and proceed to the bit to the left.

Place Values

• Because of the way counting works, we expand the representation by another bit for each power of 2.
• So, 01100101 is:
• \[64 + 32 + 8 + 1 = 105 \]
Number Magic

- How does this trick work?

Which Have Your Number?

- Think of a number from 0 to 31.
- Add the upper left number from each card your number appears on.
- It is...

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>20</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>17</td>
<td>19</td>
<td>21</td>
<td>23</td>
<td>26</td>
<td>27</td>
<td>30</td>
<td>31</td>
<td>25</td>
<td>27</td>
<td>29</td>
</tr>
<tr>
<td>25</td>
<td>27</td>
<td>29</td>
<td>31</td>
<td>25</td>
<td>27</td>
<td>29</td>
<td>31</td>
<td>25</td>
<td>27</td>
<td>29</td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>10</td>
<td>11</td>
<td>14</td>
<td>15</td>
<td>18</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td>26</td>
<td>27</td>
<td>30</td>
<td>31</td>
<td>26</td>
<td>27</td>
<td>30</td>
<td>31</td>
<td>26</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>18</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>17</td>
<td>19</td>
<td>21</td>
<td>23</td>
<td>26</td>
<td>27</td>
<td>30</td>
<td>31</td>
<td>25</td>
<td>27</td>
<td>29</td>
</tr>
<tr>
<td>25</td>
<td>27</td>
<td>29</td>
<td>31</td>
<td>25</td>
<td>27</td>
<td>29</td>
<td>31</td>
<td>25</td>
<td>27</td>
<td>29</td>
</tr>
</tbody>
</table>
Conversion

- To go from decimal to binary, start with the biggest power of 2 no bigger than your number.
- Write down a 1. Subtract the power of 2 from your number.
- Cut the power of 2 in half.
- If your remaining number is larger than the power of 2, write down a 1 and subtract the power of 2.
- If not, write down 0.
- Repeat by cutting the power of 2 in half (until you get to 1).

Example: Convert 651

- Bigger than: $2^9 = 512$.
 - 651-512=139.
 - Next power of 2 = 256.
 - Next power of 2 = 128.
 - 139-128=11.
 - Next power of 2 = 64.
 - 11-8=3
 - Next power of 2 = 4.
 - 3-2=1
 - Last power of 2 = 1.
 - 1010001011=651
Binary Addition

\[
\begin{array}{c}
01110011 \\
+ 10110010 \\
\hline
11100111
\end{array}
\]

- Just like in school: work left to right, carry when needed.
- \(0+0+0=0, 0+0+1 = 1, 0+1+1=10, 1+1+1=11\)
- Can check via conversion.

Other Operations

- Can also define subtraction (with borrowing), multiplication (simpler since there are only 3 facts: \(0\times0=0\) \(0\times1=0\) \(1\times1=1\), look familiar?), and long division.
- Can do bitwise logic operations (and, or, not).
- All are quite useful...
Other Number Schemes

- Can represent negative numbers, often via complements. \(-1 = 256 - 1 = 255\).
- Fixed-width fractions (for dollar amounts).
- Floating point representations via exponential notation: \(a \times 10^b\).
- Complex numbers: real and imaginary parts.

Implementing Addition

- Half adder: Takes two bits and a carry and outputs a bit and a carry (addc).
- Adder: Adds two 8-bit numbers (discards last carry) (addbyte).

```python
def addc(a, b, c):
    # Bit logic for addition
    bit = (a and not b and not c) or (not a and b and not c) or (not a and not b and c) or (a and b and c)
    carry = (a and b and not c) or (not a and b and not c) or (not a and b and c) or (a and b and c)
    return [carry, bit]

def addbyte(x, y):
    # 8-bit addition
    z = [0]*8
    sum7 = addc(x[7], y[7], 0)
    z[7] = sum7[1]
    sum6 = addc(x[6], y[6], sum7[0])
    sum5 = addc(x[5], y[5], sum6[0])
    sum4 = addc(x[4], y[4], sum5[0])
    sum3 = addc(x[3], y[3], sum4[0])
    sum2 = addc(x[2], y[2], sum3[0])
    sum1 = addc(x[1], y[1], sum2[0])
    z[1] = sum1[1]
    sum0 = addc(x[0], y[0], sum1[0])
    z[0] = sum0[1]
    return z
```
Difference Engine

• Takes a list of 5 numbers: column from the earlier representation.
• Produce the next column.
• Output of circuit is input of next iteration!

def DE(numlist):
 [a1, b1, c1, d1, e1] = numlist
 e2 = e1
d2 = addbyte(d1, e1)
c2 = addbyte(c1, d1)
b2 = addbyte(b1, c1)
a2 = addbyte(a1, b1)
 return [a2, b2, c2, d2, e2]

Next Time

• We now have all the pieces to build a simple, working computer...
• Each cycle, inputs propagate to outputs, which are copied back to inputs to begin again.
• We need a language to talk to it in, though.
• Read Hillis Chapter 3.